Альфред Реньи - Диалоги о математике
- Название:Диалоги о математике
- Автор:
- Жанр:
- Издательство:Мир
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альфред Реньи - Диалоги о математике краткое содержание
Под редакцией и с предисловием акад. АН УССР Б. В. Гнеденко
Диалоги о математике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Третий диалог дополняет и первый и второй. В нем автор останавливается на важных идеях: о необходимости разработки математических методов изучения движения; о построении математической теории случайных явлений; о невозможности исследования законов природы в отрыве от математики и ее специфического языка. Мысль Галилея о том, что великая книга природы написана на математическом языке и потому прочесть ее может только тот, кто знаком с ее знаками, за столетия, прошедшие со времени Галилея, нашла множество блестящих подтверждений. Сейчас важно подчеркнуть, что по мере возникновения новых задач познания природы само содержание математики не могло оставаться неизменным. Она, как живои организм, развивалась и развивала новые свои ветви. На примере начал теории вероятностей об этом рассказывает Галилей в третьем диалоге.
Действительный член Академии наук Венгерской Народной Республики Альфред Реньи — один из виднейших представителей современной математики в Венгрии. Его научные интересы в первую очередь относятся к теории вероятностей и теории чисел, а также приложениям математики к физике и инженерному делу. В течение многих лет он руководит Институтом математики Академии наук Венгерской Народной Республики и является профессором Будапештского университета. Вскоре после окончания второй мировой войны Реньи почти год работал в Ленинграде под руководством академика Ю. В. Линника.
За тысячелетия своего существования математика прошла большой и сложный путь, на протяжении которого неоднократно изменялся ее характер, содержание и стиль изложения. От первичных представлений об отрезке прямой как кратчайшем расстоянии между двумя точками, от предметных представлений о целых числах в пределах первого десятка математика пришла к образованию многих новых понятий, позволивших описывать сложнейшие явления природы и технические процессы. Из примитивного искусства счета с помощью камешков, палочек и зарубок математика сформировалась в обширную научную дисциплину с собственным предметом изучения и специфическим методом исследования. Она выработала собственный язык, очень экономный и точный, который оказался исключительно эффективным не только внутри математики, но и в многочисленных областях ее применений.
Первичные математические представления были в обиходе у людей на самых ранних стадиях развития человеческого общества. Смутные, неоформившиеся понятия «больше», «меньше», «равно», относящиеся к конкретным предметам, представления о кратчайшем расстоянии между двумя точками, выработанные в результате длительного каждодневного опыта, вооружали первобытного человека полезными сведениями. Вероятно, представления о неравенстве числа предметов, неравенстве расстояний и размеров появились у людей раньше, чем представления о числе предметов. Формирование идеи счета в пределах единиц относится к тому периоду истории человечества, от которого не сохранилось никаких письменных памятников. Это вполне естественно, так как речь, искусство счета, первичные навыки мышления относятся к временам гораздо более ранним, чем появление самой несовершенной письменности. Судить о развитии математических понятий на ранней стадии человеческого общества удается лишь на основе косвенных данных — наблюдений над некоторыми племенами в XVI–XIX вв., изучения особенностей живых и мертвых языков, являющихся не только средством общения, но и памятником духовной культуры прошлого.
Хозяйственные потребности вынуждали людей совершенствовать правила счета, измерения расстояний, а также расширять объем математических понятий. Однако в течение долгого времени накопленные сведения были и какой-то мере рецептурными и не осознавались как самостоятельная ветвь знаний. Интересно отметить, что на этой ступени развития математические сведения различных народов, даже не общавшихся между собой, поразительно близки по форме и по содержанию. Правила вычисления площадей и объемов Древнего Вавилона и Древнего Египта весьма похожи на аналогичные правила Древнего Китая. Свойство сторон прямоугольного треугольника, известное под названием теоремы Пифагора, было найдено для многих частных случаев треугольников с целочисленными сторонами задолго до Пифагора, еще в Древнем Вавилоне и в Древнем Китае. На этот вопрос дан вразумительный ответ в беседе Сократа с Гиппократом (первый диалог Реньи).
Так в течение тысячелетий многочисленными безвестными тружениками закладывался фундамент современной математики. Постепенно люди научились выполнять арифметические действия с целыми числами, а затем и с рациональными дробями, научились правильно вычислять площади довольно сложных фигур и объемы простейших тел, Уже в ту пору люди изобрели вспомогательные средства; для упрощения взаимных расчетов. Пусть эти изобретения очень примитивны, но их создание стало важным элементом человеческой культуры. И если теперь человечество знает гораздо больше и мечтает о решении проблем, которые совсем недавно казались фантастическими, то в этом велика заслуга предшествующих поколений, на опыте которых базируются все наши знания.
Примитивный математический аппарат счета и измерения, вызванный к жизни несложными потребностями охотника, скотовода, земледельца и воина тех далеких времен, оказался явно недостаточным, когда начала развиваться астрономия и далекие путешествия потребовали разработки методов ориентации в пространстве. Жизненная практика, в том числе и практика развивающихся естественных наук, стимулировала дальнейшее развитие математики. И действительно, в течение каких-нибудь двухсот лет в Древней Греции был сделан принципиально новый шаг — математика стала формироваться как дедуктивная наука. Из сборника рецептов, которыми следовало пользоваться в тех или иных житейских ситуациях, она превратилась в логически стройную систему научных знаний. В культурном развитии человечества произошел скачок, равный которому трудно найти на протяжении всей истории научных знаний. В первом диалоге Реньи математика находится на довольно высоком логическом уровне и истоки математических понятий уже не так ясны.
Читать дальшеИнтервал:
Закладка: