Альфред Реньи - Диалоги о математике

Тут можно читать онлайн Альфред Реньи - Диалоги о математике - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Диалоги о математике
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1969
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Альфред Реньи - Диалоги о математике краткое содержание

Диалоги о математике - описание и краткое содержание, автор Альфред Реньи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники. Каждой категории читателей она давала пищу для размышлений. В ней читатели находили ответы на многие принципиальные вопросы, возникавшие при встречах и беседах автора с учеными — физиками, математиками и биологами.
Под редакцией и с предисловием акад. АН УССР Б. В. Гнеденко

Диалоги о математике - читать онлайн бесплатно полную версию (весь текст целиком)

Диалоги о математике - читать книгу онлайн бесплатно, автор Альфред Реньи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Двадцатый век резко изменил представления о прикладной математике. Если раньше в арсенал средств прикладной математики входили арифметика и элементы геометрии, то восемнадцатый и девятнадцатый века добавили к ним мощные методы математического анализа. В наше время трудно указать хотя бы одну значительную ветвь современной математики, которая в той или иной мере не находила бы применений в великом океане прикладных проблем. По-видимому, разделение математики на прикладную и теоретическую потеряло смысл. Вероятно, не математика, а математики разделяются по своим интересам и творческой направленности на прикладников и теоретиков. Одни считают своей основной задачей преодоление трудностей, связанных с решением задач, которые не поддавались усилиям прежних поколений. Эти задачи интересуют их сами по себе, вне сйязи не только с прикладными вопросами, но и прогрессом математики в целом. Других волнует построение математики в ее основах. Они стремятся так отшлифовать центральные понятия математики, чтобы охватить ими возможно более широкий круг задач. Наконец, есть математики, для которых математика и ее методы существуют не ради самих себя, а в качестве орудия познания законов природы. Конкретная практическая задача для них — лишь источник размышлений; решая ее, они разрабатывают общие приемы, позволяющие освещать широкий круг различных вопросов. Такой подход особенно важен для прогресса науки. От этого выигрывает не только данная область приложений, но и все остальные, а в первую очередь — сама теоретическая математика. Именно такой подход к математике заставляет искать новые методы, новые понятия, способные охватить новый круг проблем, он расширяет область математических исследований. Последние десятилетия дают нам множество примеров подобного рода. Чтобы убедиться в этом, достаточно вспомнить появление в математике таких теперь центральных ее ветвей, как теория случайных процессов, теория информации, теория оптимального управления процессами, теория массового обслуживания, ряд областей, связанных с электронными вычислительными машинами.

Математик-прикладник обязан владеть существом реальной задачи, уметь выбрать математический инструмент, который лучше всего подходит к ней, а если такого инструмента еще не существует, то разработать его, построить разумную математическую модель изучаемого процесса, вывести из нее необходимые следствия и найти их истолкование. Настоящий математик-прикладник не может ограничиваться каким-либо одним методом и втискивать реальную проблему в известный ему математический аппарат; для каждой реальной проблемы он должен находить те математические средства, которые наиболее соответствуют ее природе. И прав Архимед, когда во втором диалоге говорит, что по сравнению с чистыми геометрами он сделал шаг дальше, указав также на нематематические следствия из теоремы о параболе.

Я убежден, что сейчас больше, чем когда бы то ни было, мы должны обратить внимание на воспитание молодых математиков, которые в математическом аппарате, в математических методах и в результатах приучились бы видеть не просто логически стройную систему знаний, но и возможности их использования для проникновения в тайны природы, управления техническими системами, лучшего использования материальных ресурсов. Очень важно — и это должно быть главной идеей математического образования, — чтобы возможно больше молодых математиков были способны сделать этот «следующий шаг», о котором говорит Архимед в книге Реньи.

Математика — язык науки

По-видимому, впервые четко и ярко о математике как языке науки сказал почти четыреста лет назад великий Галилео Галилей: «Философия написана в грандиозной книге, которая открыта всегда для всех и каждого, — я говорю о природе. Но понять ее может лишь тот, кто научился понимать ее язык и знаки, которыми она написана. Написана же она на математическом языке, а знаки ее — математические формулы». Несомненно, что с тех пор наука добилась огромных успехов и математика была ее верной помощницей. Без математики многие успехи науки и техники были бы просто невозможны. Недаром один из крупнейших физиков современности В. Гейзенберг так охарактеризовал место математики в современной теоретической физике: «Первичным языком, который вырабатывают в процессе научного усвоения фактов, является в теоретической физике обычно язык математики, а именно математическая схема, позволяющая физикам предсказывать результаты будущих экспериментов» [1] В. Гейзенберг , Физика и философия, ИЛ, М., 1963, стр. 140–141. .

Для общения и для выражения своих мыслей люди создали величайшее средство — живой разговорный язык и письменную его запись. Язык не остается неизменным — он приспосабливается к условиям жизни, обогащается словарным запасом, вырабатывает новые средства для выражения тончайших оттенков мысли. И тем не менее в ряде случаев он оказывается непригодным. В различных областях человеческой деятельности вырабатываются как бы собственные языки, специально приспособленные для точного и краткого выражения мыслей, свойственных определенному виду деятельности. При выдаче рабочего задания на изготовление нового изделия никогда не ограничиваются только словесным описанием: для уточнения размеров, формы и иных особенностей изделия необходим еще чертеж. В какой-то мере чертеж является своеобразным языком, приспособленным для передачи той информации, которую должен сообщить исполнителю конструктор. Он не допускает разночтений и позволяет в наглядной форме передать большое количество сведений, необходимых для успешного выполнения работы. Эта форма общения несравненно удобнее обычной словесной, поскольку словесное описание мало-мальски сложного конструктивного задания было бы настолько громоздким, что в нем мог бы запутаться сам автор. Графическое задание прочтет любой специалист, даже не владеющий русским языком.

В науке особенно важна ясность и точность выражения мыслей. Язык науки не должен создавать дополнительных трудностей при восприятии сообщаемой информации. Без этого требования не может быть науки как системы знаний, не может быть уверенности в том, что определенное утверждение или предположение не было искажено в процессе рассуждений. Необходимо также предусмотреть все мыслимые исходы и не пропустить каких-либо, кроме рассмотренных, возможностей. Научное изложение должно быть кратким и вполне определенным. Именно поэтому наука обязана разрабатывать собственный язык, способный максимально точно передавать свойственные ей особенности. Прекрасно сказал известный французский физик Луи де Бройль: «…где можно применить математический подход к проблемам, наука вынуждена пользоваться особым языком, символическим языком, своего рода стенографией абстрактной мысли, формулы которой, когда они правильно записаны, по-видимому, не оставляют места ни для какой неопределенности, ни для какого неточного истолкования» [2] Луи де Бройль , По тропам науки, ИЛ, М., 1962, стр. 326. . Но к этому нужно добавить, что математическая символика не только не оставляет места для неточности выражения и расплывчатого истолкования — математическая символика позволяет вдобавок автоматизировать проведение тех действий, которые необходимы для получения выводов. В качестве иллюстрации рассмотрим следующий простой пример.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альфред Реньи читать все книги автора по порядку

Альфред Реньи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Диалоги о математике отзывы


Отзывы читателей о книге Диалоги о математике, автор: Альфред Реньи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x