Альфред Реньи - Диалоги о математике

Тут можно читать онлайн Альфред Реньи - Диалоги о математике - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Диалоги о математике
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1969
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Альфред Реньи - Диалоги о математике краткое содержание

Диалоги о математике - описание и краткое содержание, автор Альфред Реньи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники. Каждой категории читателей она давала пищу для размышлений. В ней читатели находили ответы на многие принципиальные вопросы, возникавшие при встречах и беседах автора с учеными — физиками, математиками и биологами.
Под редакцией и с предисловием акад. АН УССР Б. В. Гнеденко

Диалоги о математике - читать онлайн бесплатно полную версию (весь текст целиком)

Диалоги о математике - читать книгу онлайн бесплатно, автор Альфред Реньи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пусть требуется решить задачу, которая формально сводится к решению системы линейных алгебраических уравнений. С помощью привычной алгебраической символики необходимые действия осуществляются очень просто. Нет нужды в каких-либо специальных рассуждениях: они выполнены раз навсегда для всех подобных систем. Применение набора стандартных правил позволяет без принципиальных затруднений довести решение каждой такой задачи до конца. Представим теперь, что мы лишены языка математических символов и в нашем распоряжении имеется только обычный словесный язык. В таком положении находятся, например, те, кто должен решать алгебраические задачи средствами элементарной арифметики. При этом немедленно возникают ненужные осложнения. Каждая задача становится особой проблемой и для нее нужно разрабатывать специальную систему рассуждений, самый простой вопрос требует серьезного умственного напряжения. Вспомним, как просто решаются сложные арифметические задачи, когда для их решения мы используем простейшую алгебраическую символику. А ведь это одна из простейших задач, с которыми приходится встречаться в науке, планировании, экономике пли инженерном деле.

Математическая символика позволяет сжимать запись информации, делать ее обозримой и удобной для последующей обработки. В последние годы появилась новая линия в развитии формализованных языков, связанная с вычислительной техникой и использованием электронных вычислительных машин для управления производственными процессами. Необходимо общение с машиной, надо предоставить ей возможность в каждый момент самостоятельно выбирать правильное в данных условиях действие. Но машина не понимает обычную человеческую речь, с ней нужно «разговаривать» на доступном ей языке. Этот язык не должен допускать разночтений, неопределенности, недостаточности или чрезмерной избыточности сообщаемой информации. В настоящее время разработано несколько систем языков, с помощью которых машина однозначно воспринимает сообщаемую ей информацию и действует с учетом создавшейся обстановки. Именно это и делает электронные вычислительные машины столь гибкими при выполнении сложнейших вычислительных и логических операций.

Не произойдет ли так, что математизация науки, использование формализованных символических языков приведет к отмиранию роли обычного языка в научных и практических работах? В действительности дело обстоит гораздо сложнее — у каждого языка есть сильные и слабые стороны. В результате каждая отрасль науки вынуждена использовать и обычный и символические языки. Чтобы проследить мысль автора во всех тонкостях, недостаточен только математический язык формул, необходим также текст, написанный или изложенный обычным языком. Язык формул не выводит нас за пределы записанных с их помощью понятий и представлений, он прекрасно приспособлен к получению следствий из предпосылок. Но на математическом языке невозможно проведение далеко идущих аналогий или неожиданных индуктивных выводов. Так его сила превращается в слабость. И здесь на помощь приходит обычный, неформализованный язык с его богатством оттенков и возможностей.

Математика развивается. В ней строятся новые кварталы и сносятся устаревшие здания. Многие мелкие строения объединяются в единые комплексы, а между отдаленными областями проводятся дороги для непосредственной взаимосвязи. Этот своеобразный мир растет вширь и вверх. Но, что особенно важно, он не замыкается в себе, а стремится установить дружеские контакты с другими областями знания и оказать им посильную помощь. Естественно, что в таком большом хозяйстве время от времени приходится проводить не только мелкие ремонтные работы, но и капитальную перестройку, чтобы устаревшие здания и узкие улицы не мешали дальнейшему развитию целого района. Время от времени математикам приходится окинуть взглядом всю математику и ее место в системе наук. При этом неизбежно появляются глубокие философские вопросы. Некоторым из них и посвящена книга Реньи. Я убежден, что ознакомление с ней принесет большую пользу читателям.

Б. Гнеденко

Диалог о сущности математики

Сократ Сократ Ты когото ищешь дорогой мой Гиппократ Гиппократ Нет - фото 1
Сократ

Сократ . Ты кого-то ищешь, дорогой мой Гиппократ?

Гиппократ . Нет, Сократ, поскольку я уже нашел того, кого искал. Именно тебя я искал повсюду. Кто-то на агоре [3] Агора (греч .) — рыночная площадь и место народных собраний в древнегреческих городах. — Прим. перев , сказал мне, что видел, как ты прогуливаешься вдоль реки Илиссос. Так что я шел вслед за тобой.

Сократ . В таком случае скажи, зачем ты пришел, а после я хотел бы расспросить тебя о нашей беседе с Протагором. Помнишь ли ты о ней?

Гиппократ . Как ты можешь спрашивать? И дня не прошло с тех пор без моих размышлений о ней. А сегодня я пришел к тебе за советом, поскольку эта беседа не выходит у меня из головы.

Сократ . Похоже, Гиппократ, что ты хочешь поговорить о тех же вопросах, которые я и сам хотел бы обсудить с тобой; таким образом, два предмета разговора на самом деле одно. Кажется, математики ошибаются, считая, что два никогда не равно одному.

Гиппократ . Дело в том, Сократ, что математики, как всегда, правы.

Сократ . Но ты, Гиппократ, конечно, знаешь, что я не математик. Почему же ты не задал своих вопросов знаменитому Теодору?

Гиппократ . Я просто поражен, Сократ, ты отвечаешь на мои вопросы прежде, чем я задаю их. Ведь я пришел именно для того, чтобы узнать, стоит ли мне пойти учеником к Теодору. В прошлый раз, когда я решил стать учеником Протагора, мы пошли к нему вместе и ты направил беседу так, что стало совершенно ясно — он не знает предмета, о котором рассуждает. Разумеется, я раздумал и не пошел к нему. Эта беседа помогла мне понять, чего я не должен делать, но не показала, что же следует делать. А мне хотелось бы узнать это. Я бываю на пирах и в палестре [4] Палестра (греч.) — атлетическая школа для юношей. — Прим. перев. со своими приятелями и, осмелюсь сказать, время провожу приятно, но это не дает мне удовлетворения. Я чувствую свое невежество. Точнее говоря, я чувствую, что знания, которыми обладаю, довольно неопределенны. Во время беседы с Протагором стало ясно, что мои познания о хорошо известных вещах, таких, как здравомыслие, справедливость и доблесть, совсем бедны. Но теперь я по крайней мере полностью сознаю свое невежество.

Сократ . Я рад, дорогой мой Гиппократ, что ты так хорошо меня понимаешь. Я всегда говорю себе вполне искренне, что я ничего не знаю. Разница между мной и большинством других людей, может, и состоит именно в том, что я не воображаю, будто знаю то, что в действительности мне неизвестно .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альфред Реньи читать все книги автора по порядку

Альфред Реньи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Диалоги о математике отзывы


Отзывы читателей о книге Диалоги о математике, автор: Альфред Реньи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x