Альфред Реньи - Диалоги о математике
- Название:Диалоги о математике
- Автор:
- Жанр:
- Издательство:Мир
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Альфред Реньи - Диалоги о математике краткое содержание
Под редакцией и с предисловием акад. АН УССР Б. В. Гнеденко
Диалоги о математике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Галилей . Пожалуйста, продолжайте и откройте ваши мысли. Мне очень интересно, на что именно вы обратили внимание. Ваш беспристрастный ум часто замечает такие детали, которые ускользают от внимания моих ученых коллег.
Синьора Никколини . Я заметила, что не понимаю до конца математическую теорему, пока не пойму окончательно ее доказательства. А иногда я понимаю теорему только тогда, когда вы предлагаете мне другое доказательство, совсем не похожее на первое. Когда в первый раз вы привели дополнительно новое доказательство теоремы, признаюсь, я не поняла, зачем это нужно, почему одного доказательства недостаточно. Но потом я рассудила, что в самом деле полезно рассмотреть вопрос с нескольких сторон, так же как почезно посмотреть на скульптуру с разных позиций. Конечно, я понимаю, почему многие отступают от сложного доказательства. Я тоже часто пугалась длинной и сложной цепочки аргументов, за которыми должна была внимательно следить шаг за шагом. Я чувствовала себя как скалолаз, который взбирается к вершине горы между опасными пропастями и который должен смотреть под ноги, заботясь о том, чтобы не поскользнуться. Однако, когда он достигает вершины и осматривается, великолепный вид вознаграждает его за трудный путь. Сначала я заставляла себя понимать трудные доказательства только в надежде на это зрелище, но недавно я нашла в неожиданных и остроумных шагах доказательств такую же радость, какую дает самая прекрасная музыка. По-видимому, то же происходит со скалолазом: сначала он принимает утомительное испытание только в надежде на прекрасный вид, но когда он привыкает к подъему, само преодоление препятствий и открытие новых приемов становится для него источником удовольствия.
Галилей . Вы не представляете, как приятно мне слышать ваши слова. За всю мою долгую жизнь лишь несколько учеников поняли меня и подлинный дух математики так же хорошо. Я рассказываю вам что-нибудь новое и всегда смотрю в ваши глаза. Я наблюдаю, когда в них вспыхнет свет — это означает, что вы поняли суть. Свет в глазах слушателей всегда доставляет мне огромную радость. Подобную радость мы испытываем, когда угасший было огонь в печи, который мы пытаемся оживить, вдруг вспыхивает снова. Некоторые математики заставляют своих учеников заучивать правила и разные механические шаблоны. Такое учение немногого стоит. Настоящий математик больше всего стремится к тому, чтобы ученики поняли его, он пытается научить их думать. Кто учит только рецепты вместо глубокого осознания того, что он учит, никогда не будет использовать вызубренные рецепты правильно — хорошо вычислять можно только думая. Тот, кто вычисляет не думая, подсчитывает все слишком сложным путем и часто не то, что нужно, и пусть в расчете нет ошибки, результат бесполезен. К тому, что вы сказали, мне бы хотелось добавить еще два соображения. Во-первых, математика не только полезна и совершенно необходима тем, кто стремится понять природу или использовать ее силу, например при постройке машин, но она также интересное и прекрасное, захватывающее и удивительное приключение человеческого разума. Я думаю, красота математики — это не какое-то вспомогательное дополнительное свойство, а одна из ее основных характерных особенностей. Правда всегда прекрасна, а красота всегда правдива. Древние греки знали это очень хорошо. Те, у кого варварские понятия о математике, не понимают этого: они или слепы к красоте математики, или если и видят ее, то слишком подозрительны. Они думают, что красота — излишняя роскошь, и, отворачиваясь от нее, полагают, что становятся ближе к действительности. Они глупо улыбаются с видом практичных людей и высокопарно презирают тех, кто проникся настоящим духом математики. Однако ничто так неразумно, как это презрение, которое попросту разоблачает их собственное бессилие. Это такое же презрение, как у Александра Великого, который в ярости разрубил гордиев узел мечом, потому что не смог разрешить его загадки. При дворах восточных тиранов искусство и науки действительно были только роскошью. Но в Древней Греции искусство и наука составляли органическую часть жизни; они помогали людям узнать себя и окружающий мир. По прошествии 2000 лет мы стали продолжать работу греков. Нам необходимо начать с того места, где остановился Архимед.
Синьора Никколини . Вы правы. Это очень похоже на то, что делают живописцы нашего века, но вы сказали, что у вас есть два добавления к тому, что я говорила. Где же второе?
Галилей . Второе добавление тесно связано с первым. До сих пор я говорил о красоте математики и о наслаждении, так близком к наслаждению от созерцания красоты произведения искусства, созданного человеком. Подобное наслаждение дает подлинное понимание математики и проявляется оно в сиянии глаз. Но радость приходит только в результате упорной работы. Ваше сравнение со скалолазом очень удачно. Без упорного умственного труда никто не может далеко продвинуться в математике. Но каждый, кому знакома радость познания, кто увидел красоту математики, не будет жалеть затраченных усилий. Главная цель при обучении математике— познакомить человека с этой радостью и с ее помощью обучить его дисциплинированному и логическому мышлению, которое совершенно необходимо в математике.
Это очень ценно, потому что тот, кто постиг искусство логического мышления в математике, может использовать его в любой области жизни.
Синьора Никколини . Кое-кто утверждает, что, если каждый будет думать самостоятельно, это приведет к хаосу. Они говорят, что ученый должен следовать авторитетам. А каково ваше мнение?
Галилей . Всю свою жизнь я боролся против таких взглядов. Приведу только один пример. Аристотель полагал, что для сохранения движения необходима сила. Но это неверно. Главный тезис моей новой работы, подтвержденный многочисленными доказательствами, состоит в следующем: сила необходима только для переменного движения, если же на движущееся тело сила не действует, то оно сохраняет свое равномерное движение. 2000 лет люди верили авторитету Аристотеля больше, чем собственным глазам. В повседневной жизни, так же как и в науке, важно, чтобы каждый мог думать за себя. Человек отличается от животного способностью мыслить, и потому тот, кто не желает самостоятельно думать, опускается до уровня животных. Но мы ушли слишком далеко от темы нашего разговора. Не знаю, ответил ли я на ваш вопрос.
Синьора Никколини . Я не совсем точно поняла, что вы имели в виду, сказав, что еще не нашли решающего доказательства теории Коперника. Раньше вы говорили, что такого доказательства не существует.
Галилей . Это не так, синьора. (Можно представить доказательство, которое окончательно опровергнет гипотезу о том, что Земля неподвижно стоит в центре Вселенной, а Солнце вращается вокруг нее. Когда я говорю о решающем доказательстве теории Коперника, я имею в виду такое наблюдение или эксперимент, который никаким разумным путем не может быть согласован с птолемеевским представлением о мире. Я постоянно искал такое доказательство. Чтобы понять, почему вопрос так труден, продумайте такой эксперимент. Представьте, что вы находитесь на корабле в каюте без окон; просыпаясь, вы не знаете, стойт ли корабль или движется с постоянной скоростью по прямой, потому что вы не можете заметить разницу между этими двумя состояниями, даже если у вас есть какие-то приборы. А если вы уроните что-нибудь, то падение произойдет по одним и тем жеза-конам независимо от того, стоит корабль или движется. Конечно, если бы скорость или направление движения корабля менялись, все было бы по-другому. Но пока корабль движется равномерно и прямолинейно, вы не можете заметить это из закрытой каюты. Конечно, если в каюте имеется окно, вы можете узнать, движется ли корабль относительно берега. Но если, находясь в открытом море, вы видите еще один корабль и замечаете, что ваш корабль передвигается относительно второго, то вы снова не знаете, движется ли ваш корабль, или другой, или оба.
Читать дальшеИнтервал:
Закладка: