Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Название:Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres]
- Автор:
- Жанр:
- Издательство:Литагент МИФ без БК
- Год:2019
- Город:Москва
- ISBN:978-5-00117-455-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Йэн Стюарт - Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] краткое содержание
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Укрощение бесконечности. История математики от первых чисел до теории хаоса [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Начать эту цепочку легче, чем кажется, потребуются только арифметический и квадратный корни. Исходя из очевидного θ/ 2+ θ/ 2= θ, теорема Птолемея приводит к тому, что:

Начав с cos 90° = 0, вы можете постоянно делить угол пополам, получая сколь угодно малые углы для синусов и косинусов (Птолемей использовал 1/ 4°). Затем вы можете пойти в обратную сторону, используя все целочисленные кратные этого малого угла. Начиная с нескольких основных формул тригонометрии и нескольких простых значений величины некоторых углов, вы сможете вычислить величину практически любого угла. Это был выдающийся прорыв, который вывел астрономию на вершину науки на целое тысячелетие.
Еще одним выдающимся достижением «Альмагеста» стало то, как в нем вычислены орбиты планет. Любой, кто занимается наблюдением за светилами, очень быстро замечает, что планеты блуждают между определенных звезд, а пути, по которым они следуют, довольно сложные и могут то поворачивать назад, то сворачиваться в вытянутые петли.
Евдокс, верный заветам Платона, нашел способ представлять эти сложные траектории в виде сфер, наложенных друг на друга. Его идею упростили Аполлоний и Гиппарх, предложив использовать эпициклы – окружности, чьи центры движутся по другим окружностям, и т. д. Птолемей развил идею эпициклов, и это позволило построить очень точную модель планетарных орбит.
Ранняя тригонометрия
Ранние концепции тригонометрии появляются в трудах индийских математиков и астрономов: «Панча-сиддхантика» («Трактат, включающий пять сиддхант» Варахамихиры, 575 г.), «Брахма-спхута-сиддханта» («Усовершенствованное учение Брахмы» Брахмагупты, 628 г.) и более подробный «Сиддханта-широмани» («Венец учения») Бхаскары, 1150 г.
Индийские математики обычно использовали полухорду, или «арха-джива», по сути современный синус. Варахамихира вычислил эту функцию для 24 целочисленных кратных, с 3°45´ до 90°. Примерно в 600 г. в книге Маха-Бхаскария привел полезную приблизительную формулу для синуса острого угла, изобретение которой он приписал Арьябхате. Этим ученым принадлежит авторство многих базовых тригонометрических формул.

Движение Марса, наблюдаемое с Земли
Арабский математик Насир-Ад-Дин Туси в «Трактате о полном четырехстороннике» комбинировал плоскостную и сферическую геометрию в единую унифицированную систему и привел несколько базовых формул для сферических треугольников. Он исследовал эту тему скорее с математических позиций, нежели с астрономических. Но на Западе никто не знал о его работах вплоть до 1450 г.
Благодаря тесной привязке к астрономии почти вся тригонометрия оставалась сферической вплоть до 1450 г. В частности, геодезия – нынешняя главная «потребительница» тригонометрии – по сути представляет собой эмпирически разработанные методы, приведенные в систему еще римлянами. Но в середине XV в. плоскостная тригонометрия стала выделяться в отдельную отрасль знаний, и началось это в Северогерманском Ганзейском союзе. Союз контролировал практически всю торговлю, поэтому был богатой и влиятельной организацией. И ему нужны были усовершенствованные методики навигации, наряду с точным измерением времени и практической прикладной астрономией.
Ключевой фигурой того времени был Иоганн Мюллер, более известный как Региомонтан. Он был учеником Георга Пурбаха, начавшего работу над новой редакцией «Альмагеста». В 1471 г. на деньги своего патрона Бернхарда Вальтера он работает над составлением новой таблицы синусов и таблицей тангенсов.
Другие талантливые математики XV–XVI вв. сумели создать собственные тригонометрические таблицы, зачастую поражающие своей точностью. Георг Иоахим Ретик вычислил синусы для окружности с радиусом 10 15, причем очень точно, вплоть до 15-го знака после запятой, но умножал все числа на 10 15, чтобы получить целые значения – для всех кратных с шагом в одну секунду дуги. Он открыл закон для сферических треугольников:

а также закон для косинусов
cos a = cos b · cos c + sin b · sin c · cos A
в своем «Трактате о сферических треугольниках», написанном в 1562–1563 гг., но опубликованном только в 1596 г. Здесь буквы A, B и C обозначают углы треугольника, при этом а, b и c – его стороны, измеренные по углам, которые они образуют с центром сферы.
Виет создал много трудов по тригонометрии, из которых первым был «Математический канон», изданный в 1579 г. Он обобщил и систематизировал разные методы решения треугольников, а именно определение длины всех его сторон и величины углов исходя из другой информации о нем. Он открыл новые тригонометрические тождества, в том числе несколько интересных выражений для синусов и косинусов углов, кратных θ, представленных через синус и косинус угла θ.
Логарифмы
Второй темой этой главы были заявлены логарифмы, или log x , одна из важнейших функций в математике. Прежде всего они были важны, потому что удовлетворяли уравнению
log xy = log x + log y
и тем самым могли использоваться для преобразования умножения (очень трудоемкого действия) в сложение. Чтобы перемножить две величины x и y , сперва надо найти их логарифмы, сложить их и затем найти число, логарифм которого является результатом этого сложения ( антилогарифм ). Это и будет произведение ху .
Как только математики составили таблицы логарифмов, они стали доступны любому, кто знаком с методом. С XVI в. вплоть до середины XX в. практически все научные вычисления, особенно астрономические, использовали логарифмы. Однако уже с 1960-х электронные калькуляторы и компьютеры потеснили логарифмы, сделали их ненужными. Но сама концепция остается жизненно важной для математики: логарифмы прочно занимают ведущие роли во многих отраслях этой науки, включая исчисление и комплексный анализ. Кроме того, многие процессы в физике и биологии были описаны в логарифмических функциях.
Современный взгляд на логарифмы определяет их как функцию, обратную показательной. Используя логарифмы с основанием 10, что вполне естественно для десятичной системы счисления, мы говорим, что x является логарифмом y , если y = 10 x. Например, поскольку 10 3= 1000, логарифм 1000 (с основанием 10) равен 3. Главное свойство логарифмов определяется свойством показательной функции:
10 a + b= 10 a× 10 b.
Но чтобы логарифмами можно было пользоваться, необходимо уметь найти соответствующий x для всякого положительного вещественного y . Согласно утверждению Ньютона и большинства ведущих ученых того времени, главная идея состояла в том, что любое рациональное число 10 p/ qможно определить как корень q -й степени из 10 p. Поскольку любое вещественное число x может сколько угодно близко быть приближенным рациональным числом p/ q, мы можем приблизить 10 xс помощью 10 p/ q. Это не самый эффективный способ вычислить логарифм, но самый простой способ доказать его существование.
Читать дальшеИнтервал:
Закладка: