Мартин Гарднер - Этот правый, левый мир

Тут можно читать онлайн Мартин Гарднер - Этот правый, левый мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1967. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Мартин Гарднер - Этот правый, левый мир краткое содержание

Этот правый, левый мир - описание и краткое содержание, автор Мартин Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.

Этот правый, левый мир - читать онлайн бесплатно полную версию (весь текст целиком)

Этот правый, левый мир - читать книгу онлайн бесплатно, автор Мартин Гарднер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В изложении Канта вся эта история стала сложной, запутанной и противоречивой. За последние несколько десятилетий Бертран Расселл и другие ведущие специалисты по философии науки столь усердно выставляли Канта на посмешище, что у читателя, знакомого с Кантом лишь по этим доводам, могло сложиться впечатление, будто Кант был просто неотесанный метафизик, имеющий весьма смутное представление о математике и науке.

На самом деле Кант хорошо знал науку и математику своего времени. Он был преподавателем физики, и большинство его первых работ было написано на естественнонаучные темы. Подобно Альфреду Уайтхеду он перешел от математики и физики к построению метафизической философской системы только в зрелые годы. Можно что угодно думать о его окончательных выводах, но нельзя отрицать важности его вклада в перестройку самих основ философии современной науки.

В первой работе Канта «Размышления об истинной оценке живых сил» (1747) можно найти замечательные мысли, предвосхитившие появление n -мерной геометрии. «Почему, — спрашивает он, — наше пространство трехмерно?» И заключает, что это должно быть как-то связано с тем, что такие силы, как тяготение, распространяются из начальной точки подобно расширяющимся сферам.

Их напряженность убывает обратно пропорционально квадрату расстояния. Если бы бог пожелал создать мир, где силы изменялись обратно пропорционально кубу расстояния, говорит Кант, то потребовалось бы пространство четырех измерений. (Точно так же, хоть Кант и не упоминал об этом, силы в 2-пространстве, расходящиеся кругами от точечного источника, должны были бы изменяться обратно пропорционально первой степени расстояния.) Кант в этой работе придерживался взглядов на пространство, высказанных столетием раньше великим немецким философом и математиком Готтфридом Вильгельмом фон Лейбницем.

Пространство не имеет реальности вне материальных объектов; оно является всего лишь абстрактным математическим приемом для описания связей, существующих между объектами. Хотя мысль о четвертом измерении и приходила математикам в голову, они быстро оставляли ее как забавную спекуляцию, не имеющую никакой ценности. Никто не догадался, что асимметричный трехмерный предмет может быть (теоретически) «вывернут», если его повернуть в пространстве высшей размерности; только в 1827 году, через восемьдесят лет после появления статьи Канта, на это указал Август Фердинанд Мёбиус, немецкий астроном, в честь которого назван лист Мёбиуса. Поэтому вызывают изумление следующие строки, написанные Кантом еще в 1747 году: «Наука о всевозможных пространствах такого рода (пространствах с числом измерений больше трех) будет, несомненно, высшим усилием, которое наш ограниченный разум может предпринять в области геометрии». «Может быть, — добавляет он, — существуют протяженности с другими измерениями, и вполне вероятно, что бог нашел способ создать их, потому что в созданиях его все величие и многогранность, которые они могут вместить». Такие высшие пространства, однако, «не принадлежат к нашему миру, а образуют другие миры».

В 1768 году в статье «О первой причине различия между областями в пространстве» Кант отошел от идей Лейбница на пространство и принял взгляды Ньютона. Пространство — неподвижная, абсолютная вещь, «эфир» XIX столетия; оно имеет свою собственную реальность, не зависящую от материальных объектов. Чтобы установить существование такого пространства, Кант обращает свое внимание на предметы, которые он называет «неконгруэнтными двойниками», на трехмерные асимметричные фигуры одинаковых размеров и формы, но противоположной «направленности», такие, как раковины улиток, вьющиеся растения, правая и левая руки. Существование таких предметов, рассуждает он, означает, что пространство ньютоново. И чтобы доказать это, использует поразительный мысленный эксперимент, который можно воспроизвести следующим образом. Представим себе, что космос совершенно пуст, в нем нет ничего, кроме единственной человеческой руки. Правая это рука или левая? Поскольку внутренних измеримых различий между энантиоморфными объектами не существует, у нас нет оснований называть ее правой или левой. Конечно, если вы представите себя, глядящим на эту руку, то сразу увидите, правая она или левая, но это равносильно включению самого себя (со своим ощущением правого и левого) в 3-пространство. Нужно представить себе, что рука в пространстве совершенно изолирована и не имеет никакой связи с другими геометрическими объектами. Ясно, что бессмысленно будет говорить, что это рука правая или левая, точно так же, как бессмысленными являются для этой руки слова «маленькая» и «большая» или «верх» и «низ».

Представим себе теперь что в пространстве рядом с рукой материализуется человеческое тело. У него не хватает только рук ниже запястья. Очевидно, что рука пойдет только к одному, скажем к левому запястью. Следовательно, это левая рука. Чувствуете ли вы парадокс? Если мы доказали, что это левая рука, подогнав ее к левому запястью, то, значит, она была левой и до появления тела. Должна же быть какая-то причина, какое-то основание для того, чтобы назвать ее левой, даже если она — единственное тело во Вселенной! Кант считал, что объяснить это можно, лишь предположив, что само пространство обладает чем-то вроде абсолютной объективной структуры — какой-то трехмерной решетки что ли, — которая и даст возможность определить «направленность» единичного асимметричного объекта.

Современный читатель, знакомый с n -мерной геометрией, должен без труда разобраться в словесных трудностях кантовского мысленного эксперимента. Суть ошибки Канта очень наглядно изображена в одном из эпизодов рассказа в картинках Джона Харта под названием «До нашей эры». Один из пещерных людей на рисунке Харта только что изобрел барабан. Он ударяет несколько раз по чурбану палкой, которую держит в одной руке, и говорит: «Это левая дробь». Потом он ударяет палкой, которую держит в другой руке, и говорит: «А это правая дробь». «Откуда ты знаешь, которая из них какая?» — спрашивает его один из зрителей. Барабанщик показывает на тыльную сторону одной из ладоней и говорит: «У меня на этой руке родинка».

Посмотрим, какое отношение имеет это к ошибке Канта. Представим себе Флатландию, в которой нет ничего, кроме одной плоской руки. Она асимметрична, но бессмысленно говорить, правая она или левая, поскольку другой асимметричной структуры в этой плоскости нет. Это следует также из того, что из 3-пространства мы можем посмотреть на эту руку с обеих сторон и увидеть ее в одной из двух зеркальносимметричных форм. Положение изменится, если мы введем безрукого двумерца и определим у него «левую» сторону, скажем ту, где у него сердце. Это никоим образом не значит, что рука была «левой» или «правой» до появления двумерца, потому что появиться он может в одной из двух энантиоморфных модификаций. Если положить его на плоскость одним способом, то рука будет левой. Переверните его и положите по-другому — рука станет правой, потому что будет прикрепляться на противоположной от сердца стороне.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Этот правый, левый мир отзывы


Отзывы читателей о книге Этот правый, левый мир, автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x