Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5. Экспериментальные данные

Многие исследователи проводили эксперименты, участники которых соперничали друг с другом в различных вариантах дилеммы заключенных [166]. Как показывают результаты этих экспериментов, сотрудничество в таких играх возможно и действительно наблюдается, причем даже в повторяющихся играх с известной или конечной продолжительностью. Многие игроки начинают игру с сотрудничества и поддерживают его достаточно долго при условии, что соперник отвечает тем же. Отказ от сотрудничества появляется только в нескольких последних раундах игры. Хотя подобное поведение противоречит логике обратных рассуждений, оно может оказаться выигрышным, если придерживаться его в течение приемлемого срока. Пары участников таких игр получают более высокий выигрыш, чем получили бы рационально мыслящие, расчетливые стратеги посредством отказа от сотрудничества с самого начала игры.

Идея о том, что определенный уровень сотрудничества представляет собой рациональное (то есть равновесное) поведение, имеет теоретическое обоснование. Рассмотрим тот факт, что когда игроков спрашивают, почему они выбрали сотрудничество во время первых раундов игры, они обычно говорят нечто вроде: «Я был готов попробовать и посмотреть, насколько другой игрок благожелателен, а когда это оказывалось действительно так, я продолжал сотрудничать до тех пор, пока не приходило время воспользоваться его доброжелательностью». Безусловно, на самом деле другой игрок мог и не быть так дружественно настроен, но он мог размышлять аналогичным образом. Строгий анализ конечно повторяющейся дилеммы заключенных с подобной разновидностью асимметричной информации показывает, что в этом может заключаться еще одно ее решение. Если существует вероятность того, что участникам игры «дилемма заключенных» свойственна благожелательность, а не эгоизм, даже эгоистичному игроку может быть выгодно имитировать дружелюбие. Это позволит ему какое-то время получать более высокие выигрыши за счет сотрудничества, рассчитывая на то, что к концу последовательности раундов игры он воспользуется преимуществами обмана. Более подробный анализ ситуации, в которой только у одного из игроков есть выбор между дружественным и эгоистичным поведением, содержится в онлайн-приложении к данной главе. Решение соответствующей игры с двумя участниками представлено в оригинальной статье [167].

Кооперативное поведение в ходе лабораторных экспериментов можно объяснить, и не прибегая к такому типу асимметричности информации. Возможно, игроки не уверены, действительно ли отношения между ними будут разорваны в указанное время. Они могут считать, что их готовность к взаимодействию будет учтена в аналогичных играх против того же или других соперников. Не исключено, что они считают своих соперников наивными и в рамках проверки этой гипотезы готовы понести определенные убытки на протяжении пары раундов игры. В случае успеха этот эксперимент приведет к получению более высоких выигрышей в течение достаточно длительного периода.

В ходе ряда лабораторных экспериментов игроки участвуют в играх, состоящих из нескольких раундов, в каждом из которых выполняется конечное число повторений. Все повторные сеансы одного раунда разыгрываются против одного соперника, а каждый новый раунд — против нового соперника. Таким образом, в каждом раунде у игрока есть возможность наладить сотрудничество с соперником и накопить опыт для разработки стратегии против новых соперников в последующих раундах игры. Подобные ситуации показывают, что сотрудничество в начальных раундах игры длится дольше, чем в заключительных. Этот результат говорит о том, что теоретический вывод о прекращении сотрудничества, построенный на применении анализа методом обратных рассуждений, со временем формируется на основании опыта ведения игры, по мере того как игроки начинают лучше понимать выгоды и издержки своих действий. Еще одно возможное объяснение состоит в том, что игроки просто начинают понимать, что им необходимо первыми отказаться от сотрудничества, поэтому такой момент наступает все раньше по мере увеличения количества сыгранных раундов.

Предположим, вы участвуете в игре, структурированной как дилемма заключенных, и поддерживаете взаимодействие с другим игроком, но приближается известный вам момент его прекращения. Когда вам следует разорвать сотрудничество? Вы не должны делать это слишком рано, когда остается много потенциальных будущих выгод, но и не должны оставлять решение на слишком поздний этап игры, поскольку тогда ваш соперник может вас опередить и поставить перед фактом низкого выигрыша за тот период, когда он сам откажется от сотрудничества. Аналогичные расчеты применимы и в случае, когда вы поддерживаете конечно повторяющееся взаимодействие с неопределенным моментом его прекращения. Ваше решение об отказе от сотрудничества не может быть детерминированным, иначе ваш соперник понял бы это и опередил вас. Если детерминированное решение неосуществимо, то прекращение сотрудничества должно содержать элемент неопределенности (такой как смешанные стратегии) для обоих игроков. Во многих триллерах, сюжет которых основан на шатком сотрудничестве между преступниками или информаторами и полицией, напряженность присутствует именно по причине такой неопределенности.

Примеры прекращения сотрудничества между игроками по мере приближения повторяющейся игры к концу наблюдаются во многих ситуациях как в лабораториях, так и в реальном мире. Велогонки (или состязания в беге) — один из таких примеров. В течение большей части гонки игроки по очереди занимают лидирующую позицию и дают другим спортсменам возможность ехать в зоне пониженного давления. Однако по мере приближения к финишу каждый участник гонок делает стремительный рывок. По этой же причине весной в конце семестра в магазинах университетских городков появляются объявления «чеки не принимаются».

В ходе экспериментов на основе компьютерного моделирования был проанализирован целый диапазон стратегий (от очень простых до очень сложных), используемых игроками друг против друга в дилеммах заключенных с двумя участниками. Самый известный провел Роберт Аксельрод из Мичиганского университета. Он предложил всем желающим написать компьютерные программы, представляющие собой стратегии решения дилеммы заключенных, которая повторяется конечное, но достаточно большое количество раз (а именно 200 раз). Аксельрод получил 14 заявок, после чего организовал групповой турнир, в ходе которого пары программ соревновались друг с другом, в каждом случае выполняя по 200 повторных сеансов игры подряд. Во время турнира подсчитывались очки по всем парам во всех 200 повторных сеансах игры; на основании очков, набранных каждой программой в играх против всех остальных программ, была определена программа, получившая самый высокий результат. Для Аксельрода стало неожиданностью то, что «хорошие» программы показали самые высокие результаты; среди программ, занявших первых восемь мест в рейтинге, не было ни одной, которая бы когда-либо первой отказалась сотрудничать. Победила самая простая стратегия «око за око», представленная канадским специалистом по теории игр Анатолем Рапопортом. Программы, которые стремились к отказу от сотрудничества в любом отдельно взятом сеансе игры, сразу же получали выигрыш, но затем наступал период взаимных отказов и плохих выигрышей. Аксельрод объясняет успех стратегии равноценных ответных действий наличием четырех свойств: прощение, доброжелательность, возмездие и предсказуемость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x