Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Дилемму заключенных можно решить не только путем наказания игроков, отказавшихся от сотрудничества, но и посредством вознаграждения игроков, которые его предпочли. Поскольку такое решение трудно реализуемо на практике, мы лишь кратко остановится на нем.

Самый важный вопрос — кто должен выплачивать вознаграждение. Если третья сторона (один человек или группа), то ее заинтересованность в сотрудничестве между игроками должна быть достаточной, чтобы оправдать целесообразность такой выплаты. Один из редких примеров подобной ситуации — посредничество США при заключении Кэмп-Дэвидских соглашений между Израилем и Египтом, когда Штаты пообещали обеим странам солидную помощь.

Если выплачивать друг другу вознаграждение должны сами игроки, то его необходимо сделать условным (выплачивается только в случае сотрудничества другого игрока) и достоверным (гарантированно выплачивается в случае сотрудничества другого игрока). Для удовлетворения этим критериям следует заключить особое соглашение. Например, игрок, дающий обещание, должен заранее внести определенную сумму на счет условного депонирования, принадлежащий порядочному и нейтральному третьему лицу, которое передаст ее другому игроку, если тот выберет сотрудничество, или вернет первому игроку, если второй откажется взаимодействовать. В упражнениях в конце главыпоказано, как действуют такие договоренности.

4. Категория решений III: лидерство

Третий метод решения дилеммы заключенных относится к ситуациям, в которых один игрок берет на себя роль лидера во взаимодействии. В большинстве примеров дилеммы заключенных эта игра считается симметричной. Иными словами, все игроки теряют или получают одну и ту же сумму при отказе от сотрудничества и при согласии сотрудничать. Однако в реальных стратегических ситуациях один игрок может быть относительно «крупным» (лидером), а другой — «мелким». Если размер выигрышей неравноценен, отказ от сотрудничества способен нанести более крупному игроку такой вред, что он может пойти на сотрудничество, даже зная, что другой игрок может отказаться от него. Например, Саудовская Аравия много лет играла в ОПЕК (Организации стран — экспортеров нефти) роль «стабилизирующего производителя»: для поддержания высокой цены на нефть она сокращала ее добычу, в то время как один из более мелких производителей (таких как Ливия) увеличивал.

Как в примере с ОПЕК, лидерствочаще наблюдается в играх между странами, чем между компаниями или отдельными людьми. Именно поэтому в качестве примера игры, в которой лидерство можно использовать для решения дилеммы заключенных, мы выбрали игру между странами. Представьте, что населению двух стран, Дорминики и Софории, угрожает болезнь под названием SANE (Sudden Acute Narcoleptic Episodes — «внезапные резкие приступы нарколепсии»). Заболевание поражает одного человека из 2000, или 0,05 % от общей численности населения, и приводит к тому, что жертва впадает в состояние глубокого сна на целый год [164]. У болезни нет осложнений, но издержки, связанные с выпадением работника из экономической жизни страны на год, составляют 32 000 долларов. В каждой стране по 100 миллионов трудоспособного населения, поэтому ожидаемое количество случаев заболевания в каждой составляет 50 000 (0,0005 × 100 000 000), а ожидаемые издержки в связи с распространением болезни равны 1,6 миллиарда долларов (50 000 × 32 000). Общий ожидаемый уровень издержек в связи с болезнью во всем мире (то есть в Дорминике и Софории) составляет при этом 3,2 миллиарда долларов.

Ученые убеждены, что интенсивная программа исследований стоимостью 2 миллиарда долларов позволит найти стопроцентно эффективную вакцину. Сравнение стоимости этой исследовательской программы с уровнем издержек в связи с распространением болезни во всем мире показывает, что, с точки зрения населения в целом, программу следует реализовать. Однако правительство каждой страны должно рассмотреть вопрос о том, стоит ли ему в одиночку финансировать всю исследовательскую программу. Правительства двух стран принимают решения независимо друг от друга, но от этих решений зависит исход игры для обеих стран. В частности, если правительство одной страны берется финансировать весь проект, население другой страны сможет получить доступ к информации и найдет вакцину без всяких затрат. Тем не менее выигрыш каждого правительства зависит только от издержек, понесенных населением его страны.

Матрица этой некооперативной игры представлена на рис. 10.6. Каждая страна выбирает из двух стратегий: «провести исследования» и «не проводить исследований»; выигрыши отображают выраженные в миллиардах долларов издержки двух стран в случае различных комбинаций стратегий. Несложно определить, что эта игра представляет собой дилемму заключенных и что «не проводить исследования» — доминирующая стратегия каждой страны.

Рис. 10.6.Выигрыши в игре «исследования по преодолению болезни SANE» между двумя странами с одинаковой численностью трудоспособного населения (выигрыши выражены в миллиардах долларов)

А теперь предположим, что в этих странах неодинаковая численность трудоспособного населения — 150 миллионов в Дорминике и 50 миллионов в Софории. В таком случае, если ни одно правительство не станет финансировать исследования, издержки Дорминики в связи с распространением SANE составят 2,4 миллиарда долларов (0,0005 × 150 000 000 × 32 000), а Софории — 0,8 миллиарда долларов (0,0005 × 50 000 000 × 32 000). Измененная матрица игры представлена на рис. 10.7.

Рис. 10.7.Выигрыши в игре «исследования по преодолению болезни SANE» между двумя странами с неодинаковой численностью трудоспособного населения (выигрыши выражены в миллиардах долларов)

В этой версии игры «не проводить исследований» по-прежнему доминирующая стратегия Софории. Однако теперь наилучший ответ Дорминики — «провести исследования». Что привело ее к изменению выбора стратегии? Очевидно, что ответ кроется в неравномерном распределении населения в измененной версии игры. Теперь на долю Дорминики может выпасть настолько большая часть общих издержек в связи с распространением болезни, что страна посчитает целесообразным самостоятельно провести необходимые исследования, причем даже в случае, если ей известно, что Софория намерена сыграть роль «безбилетника» и воспользоваться их результатами.

Игра в исследования, представленная на рис. 10.7, — уже не дилемма заключенных. Здесь мы видим, что дилемма в каком-то смысле уже «решена» асимметричностью масштаба игроков. Более крупная страна предпочитает взять на себя роль лидера и принести пользу всему миру.

Ситуации с лидерством, в которых при иных обстоятельствах могла бы присутствовать дилемма заключенных, часто встречаются в международной дипломатии. Зачастую роль лидера естественным образом достается самым крупным или самым авторитетным игрокам (этот феномен известен как «эксплуатация сильных слабыми») [165]. Например, долгие годы после Второй мировой войны Соединенные Штаты Америки несли на себе непропорционально большую долю расходов в оборонительных союзах, таких как НАТО, а также продвигали идею свободной международной торговли, тогда как партнеры, в частности Япония и Европа, склонялись к более протекционистской политике. Возможно, в подобных ситуациях было бы разумно предположить, что более крупный или авторитетный игрок может взять на себя роль лидера, поскольку его интересы тесно связаны с интересами всей совокупности игроков; если на крупного игрока приходится значительная часть группы, такое переплетение интересов кажется очевидным и от крупного игрока ожидают более кооперативных действий, чем при других обстоятельствах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x