Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Г. Изменение метода голосования приводит к изменению результата

Как должно следовать из предыдущих объяснений, разные правила голосования могут обеспечивать разные результаты. В качестве примера рассмотрим 100 избирателей, которых можно разбить на три группы на основании их предпочтений в отношении трех кандидатов (А, Б и В). Выбор трех групп избирателей отображен на рис. 15.3. При таких предпочтениях в зависимости от применяемого метода агрегирования голосов у любого из трех кандидатов есть шанс выиграть выборы.

Рис. 15.3.Предпочтения групп избирателей в отношении кандидатов

При использовании принципа относительного большинства выигрывает кандидат А, получивший 40 % голосов, хотя 60 % избирателей отдают ему наименьшее предпочтение из всех троих кандидатов. Очевидно, что сторонники кандидата А выбрали бы этот метод голосования. Если бы у них была возможность выбирать систему голосования, то принцип относительного большинства (на первый взгляд справедливый) обеспечил бы кандидату А победу на выборах, несмотря на сильную неприязнь к нему большинства избирателей.

Однако подсчет Борда привел бы к другому результату. В системе Борда 3 балла получает наиболее рейтинговый среди избирателей кандидат, 2 балла — кандидат, занявший среднюю позицию, и 1 балл — кандидат с наименьшим числом голосов. В таком случае кандидат А имеет 40 голосов за первое и 60 голосов за третье место, что в сумме дает 40(3) + 60(1) = 180 баллов. Кандидат Б получает 25 голосов за первое и 75 голосов за второе место; в сумме это 25(3) + 75(2) = 225 баллов. Кандидат В получает 35 голосов за первое, 25 голосов за второе и 40 голосов за третье место, что в сумме равно 35(3) + 25(2) + 40(1) = 195 баллов. При такой процедуре подсчета голосов побеждает кандидат Б, кандидат В становится вторым, а кандидат А — третьим. Кандидат Б выигрывает выборы и в случае применения метода относительного антибольшинства, при котором избиратели отдают голоса за всех кандидатов, кроме наименее предпочтительного.

А как насчет кандидата В? Он может выиграть выборы при использовании системы относительного большинства или мгновенного второго тура. В любом из этих случаев кандидаты А и В, получившие 40 и 35 голосов в первом туре, выходят во второй тур. Система простого большинства со вторым туром потребовала бы от избирателей повторного выбора между А и В, тогда как система мгновенного второго тура привела бы к исключению кандидата Б и передаче его голосов (из второй группы избирателей) альтернативе со следующим уровнем предпочтения, то есть кандидату В. В итоге кандидат В победит во втором туре с перевесом голосов 60 против 40, поскольку кандидат А — наименее предпочтительная альтернатива для 60 из 100 избирателей.

Еще одним примером получения разных результатов вследствие применения разных процедур голосования могут служить выборы мэра Окленда в 2010 году, о которых мы упоминали во вступлении к данной главе. В настоящее время голосование по выбору места проведения Олимпийских игр проходит по системе мгновенного второго тура вместо нескольких этапов голосования по принципу относительного большинства с последовательным исключением. Такое изменение было сделано после получения весьма неожиданных результатов в ходе выбора городов для проведения игр 1996-го и 2000 годов. В обоих случаях победитель по принципу относительного большинства во всех турах голосования, кроме предпоследнего, проиграл в состязании с оставшимся городом в последнем туре. Афины проиграли Атланте в борьбе за право проведения Олимпийских игр 1996 года, а Пекин — Сиднею за право проведения Олимпийских игр 2000 года.

3. Оценка систем голосования

Анализ различных парадоксов голосования позволяет предположить, что методам голосования присущ ряд недостатков, которые приводят к необычным, неожиданным, а порой и несправедливым результатам. Кроме того, из этого предположения вытекает следующий вопрос: существует ли система голосования, удовлетворяющая определенным условиям регулярности, в том числе условию транзитивности, которая является самой «справедливой», то есть наиболее точно учитывает предпочтения электората? Теорема о невозможностиКеннета Эрроу говорит нам, что ответ на этот вопрос — нет [261].

Формальное описание теоремы Эрроу и ее полное доказательство выходят за рамки данной книги, но суть теоремы проста. Эрроу утверждал, что ни один метод агрегирования предпочтений не может удовлетворять всем шести установленным им условиям.

1. Ранжирование социальных или коллективных предпочтений должно охватывать все альтернативы (быть полным).

2. Ранжирование предпочтений должно быть транзитивным.

3. Ранжирование предпочтений должно удовлетворять условию, известному как условие положительного реагирования , или свойство Парето. Если при наличии двух альтернатив А и Б электорат единодушно отдает предпочтение А, то агрегированное ранжирование предпочтений должно ставить альтернативу А выше альтернативы Б.

4. Ранжирование предпочтений не должно определяться внешними факторами (такими как обычаи), не зависящими от предпочтений отдельных членов общества.

5. Ранжирование предпочтений не должно быть диктаторским: один избиратель не должен влиять на ранжирование предпочтений всей группы.

6. Ранжирование предпочтений должно быть независимым от посторонних альтернатив; другими словами, никакие изменения в группе кандидатов (включение кандидатов в группу или исключение из нее) не должны приводить к изменению рейтинга тех кандидатов, на которых это не распространяется.

Теорему Эрроу часто сокращают путем включения в нее только первых четырех условий, ссылаясь на сложность одновременного удовлетворения последних двух условий; упрощенная формулировка гласит, что достичь независимости от посторонних альтернатив без диктаторства невозможно [262].

Наверное, вы уже увидели, что некоторые из рассмотренных выше методов голосования не удовлетворяют всем условиям Эрроу. Требование о независимости от посторонних альтернатив, например, нарушается как в случае системы единого передаваемого голоса, так и в случае подсчета Борда, как мы убедились в разделе 2.В.Однако метод Борда недиктаторский и непротиворечивый и удовлетворяет свойству Парето. Все остальные рассмотренные нами системы удовлетворяют условию независимости от посторонних альтернатив, но нарушают одно из оставшихся условий.

Теорема Эрроу положила начало обширным исследованиям относительно устойчивости его вывода к изменениям исходных предпосылок. Экономисты, политологи и математики искали способ уменьшить количество критериев или как минимум ослабить условия Эрроу с тем, чтобы найти процедуру, удовлетворяющую этим критериям при сохранении основных условий, однако их усилия в основном оказались тщетными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x