Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
95
Описание общей теории воздействия изменения выигрыша в определенной ячейке на равновесную комбинацию и ожидаемые выигрыши в равновесии можно найти здесь: Vincent Crawford and Dennis Smallwood, Comparative Statics of Mixed-Strategy Equilibria in Noncooperative Games, Theory and Decision, vol. 16 (May 1984), pp. 225–32.
96
Обратите внимание, что значение V — не обязательно денежная сумма; это может быть величина полезности с учетом нерасположенности к риску. Мы рассмотрим вопросы, связанные с риском, более подробно в главе 8, а об отношении к риску и ожидаемой полезности рассказывается в приложении к этой главе.
97
Этот результат получен с учетом того, что мы можем полностью исключить V из уравнения безразличия соперника, а значит, он не зависит от конкретных значений вероятности успеха, указанных на рис. 7.6. Следовательно, такой результат типичен для игр со смешанными стратегиями, в которых каждый выигрыш равен произведению вероятности успеха и значения выигрыша в случае успеха.
98
К числу немногочисленных научных работ, предлагающих альтернативные основы теории игр, можно отнести следующие: Vincent P. Crawford, Equilibrium Without Independence, Journal of Economic Theory, vol. 50, no. 1 (February 1990), pp. 127–54; and James Dow and Sergio Werlang, Nash Equilibrium Under Knightian Uncertainty, Journal of Economic Theory, vol. 64, no. 2 (December 1994), pp. 305–24. А наше описание данной проблемы в первом издании книги вдохновило некоторых ученых на написание статьи, посвященной новым методам ее решения: Simon Grant, Atsushi Kaji, and Ben Polak, Third Down and a Yard to Go: Recursive Expected Utility and the Dixit-Skeath Conundrum, Economic Letters, vol. 73, no. 3 (December 2001), pp. 275–86. К сожалению, в этой статье используются более сложные концепции, чем концепции начального уровня, которые рассматриваются в данной книге.
99
Даже если игрок располагает только двумя чистыми стратегиями, он может не применять одну из них в равновесии. В таком случае другой игрок обычно обнаруживает, что одна из его стратегий более эффективна в игре против той стратегии, которую первый игрок все же использует. Иными словами, такая равновесная «комбинация» стратегий сводится к частному случаю чистых стратегий. Однако если в распоряжении одного или обоих игроков есть три или более стратегии, мы можем получить настоящее равновесие в смешанных стратегиях, где некоторые из чистых стратегий остаются неиспользованными.
100
В общем случае, если у игрока N чистых стратегий, то его комбинация содержит ( N − 1) независимых переменных, или степеней свободы выбора.
101
Покер — это игра с неполной информацией, поскольку каждый игрок располагает только личной информацией о своих картах. Мы проанализируем такие игры более подробно в главе 8, а пока отметим, что они могут включать в себя равновесия в смешанных стратегиях (так называемые полуразделяющие равновесия), в которых случайные комбинации стратегий предназначены именно для того, чтобы помешать другому игроку раскрыть вашу личную информацию на основании ваших действий.
102
Харрингтон Д., Роберти Б. Харрингтон о холдеме. Профессиональная стратегия для турниров по безлимитному покеру. Том 1. Стратегическая игра. Самара: Сафари, 2008.
103
Douglas D. Davis and Charles A. Holt, Experimental Economics (Princeton: Princeton University Press, 1993), p. 99.
104
Colin F. Camerer, Behavioral Game Theory (Princeton: Princeton University Press, 2003).
105
R. S. Beresford and M. H. Peston, “A Mixed Strategy in Action,” Operations Research, vol. 6, no. 4 (December 1955), pp. 173–76.
106
Mark Walker and John Wooders, “Minimax Play at Wimbledon,” American Economic Review, vol. 91, no. 5 (December 2001), pp. 1521–38.
107
Ignacio Palacios-Huerta, Professionals Play Minimax, Review of Economics Studies, vol. 70, no. 20 (2003), pp. 395–415.
108
Pierre-André Chiappori, Timothy Groseclose, and Steven Levitt, Testing Mixed Strategy Equilibria When Players are Heterogeneous: The Case of Penalty Kicks in Soccer, American Economic Review, vol. 92, no. 4 (September 2002), pp. 1138–51.
109
Результаты первого из упомянутых выше исследований представлены в статье: Ignacio Palacios-Huerta and Oskar Volij, Experientia Docet: Professionals Play Minimax in Laboratory Experiments, Econometrica, vol. 76, no. 1 (January 2008), pp. 71–115. Результаты второго исследования опубликованы здесь: Steven D. Levitt, John A. List, and David H. Reiley, What Happens in the Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments, Econometrica, vol. 78, no. 4 (July 2010), pp. 1413–34.
110
Jack Ochs, “Games with Unique Mixed-Strategy Equilibria: An Experimental Study,” Games and Economic Behavior, vol. 10, no. 1 (July 1995), pp. 202–17.
111
Когда мы говорим о формировании случайного исхода, это означает, что в нем нельзя обнаружить закономерность или же ее нельзя определить с помощью доступных научных методов прогнозирования и вычислений. На самом деле движение монет и игральных костей полностью подчиняется законам физики, а опытные игроки могут манипулировать колодами карт, однако для всех практических целей подбрасывание монет, бросание костей и тасование карт можно использовать в качестве инструментов случайности, позволяющих генерировать случайные исходы. Тем не менее добиться случайности не так легко, как кажется. Например, в случае идеального тасования колода карт делится на две равные части, после чего карты перемешиваются посредством поочередного сброса по одной карте из каждой половины колоды. На первый взгляд может показаться, что это хороший способ нарушить первоначальный порядок расположения карт в колоде. Однако математик из Корнелльского университета Перси Диаконис показал, что после восьми тасований первоначальный порядок полностью восстанавливается. Он пришел к выводу, что при несколько менее идеальном тасовании, которое люди выполняют в реальной жизни, порядок расположения карт в колоде сохраняется порой даже после шести тасований, а случайный порядок внезапно возникает на седьмом тасовании! См. Persi Diaconis, How to Win at Poker, and Other Science Lessons, The Economist, October 12, 1996. Интересное обсуждение этой темы можно найти здесь: Deborah J. Bennett, Randomness (Cambridge, Mass.: Harvard University Press, 1998), chs. 6–9.
112
Ряд примеров такого вычисления вероятностей приведен в книге: Bennett, Randomness, chs. 4 and 5.
113
Если вы хотите ознакомиться с более подробным описанием правил сложения и умножения вероятностей, а также получить доступ к большему количеству упражнений для отработки этих правил, рекомендуем вам следующую книгу: David Freeman, Robert Pisani, and Robert Purves, Statistics, 4th ed. (New York: W. W. Norton & Company, 2007), chs. 13 and 14.
114
В 2001 году пионеры теории асимметричной информации в экономике Джордж Акерлоф, Майкл Спенс и Джозеф Стиглиц получили Нобелевскую премию по экономике за вклад в изучение этих вопросов.
115
График плотности вероятности нормального закона. Прим. ред.
116
Авинаш Диксит и Барри Нейлбафф приводят знаменитый пример использования этой стратегии во время парусной регаты в книге Thinking Strategically ( Нейлбафф Б., Диксит А. Стратегическое мышление в бизнесе, политике и личной жизни. М.: Вильямс, 2007). Общий теоретический анализ этой темы можно найти здесь: Luis Cabral, R&D Competition When the Firms Choose Variance, Journal of Economics and Management Strategy, vol. 12, no. 1 (Spring 2003), pp. 139–50.
Читать дальшеИнтервал:
Закладка: