Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

78

Информацию о моделях ценовой конкуренции с одновременными ходами можно найти здесь: Timothy F. Bresnahan, Empirical Studies of Industries with Market Power, in Handbook of Industrial Organization, vol. 2, ed. Richard L. Schmalensee and Robert D. Willig (Amsterdam: North-Holland/Elsevier, 1989), pp. 1011–57. Описание моделей выхода на рынок представлено здесь: Steven Berry and Peter Reiss, Empirical Models of Entry and Market Structure, in Handbook of Industrial Organization, vol. 3, ed. Mark Armstrong and Robert Porter (Amsterdam: North-Holland/Elsevier, 2007), pp. 1845–86.

79

Pankaj Ghemawat, Capacity Expansion in the Titanium Dioxide Industry, Journal of Industrial Economics, vol. 33, no. 2 (December 1894), pp. 145–63. Больше примеров приведено здесь: Pankaj Ghemawat, Games Businesses Play: Cases and Models (Cambridge, Mass.: MIT Press, 1997).

80

Stephen Jay Gould, Losing the Edge, in The Flamingo’s Smile: Reflections in Natural History (New York: W. W. Norton & Company, 1985), pp. 215–29.

81

Издана на русском языке: Льюис М. Moneyball. Как математика изменила самую популярную спортивную лигу в мире. М.: Манн, Иванов и Фербер, 2013. Прим. ред.

82

Susan Slusser, Michael Lewis on A’s ‘Moneyball’ Legacy, San Francisco Chronicle, September 18, 2011, p. B-1. Исходная книга: Michael Lewis, Moneyball: The Art of Winning an Unfair Game (New York: W. W. Norton & Company, 2003).

83

В статье, авторы которой пытаются найти недостатки равновесия Нэша в экспериментальных данных и в которой представлены альтернативные модели преодоления этих недостатков, основанные на концепции квантильного равновесия, два известных исследователя пишут: «Мы первыми готовы признать, что начинаем анализ новой стратегической задачи с рассмотрения равновесий, полученных посредством стандартной теории игр, прежде чем рассматривать другие возможности». См. Jacob K. Goeree and Charles A. Holt, “Ten Little Treasures of Game Theory and Ten Intuitive Contradictions,” American Economic Review, vol. 91, no. 5 (December 2001), pp. 1402–22.

84

Безусловно, мы приводим здесь только самый короткий, самый быстрый способ анализа, исключив из рассмотрения все вопросы, связанные с функциями, у которых нет производных, с функциями, точка экстремума которых находится вне того интервала, на котором они определены, и т. д. Одним читателям будет известно все, что мы здесь скажем, другие узнают намного больше. Тем читателям, которые захотят изучить эту тему еще глубже, следует обратиться к любому учебнику по математическому анализу.

85

Иногда одновременная составляющая такой игры содержит равновесия в смешанных стратегиях; это требует применения инструментов, которые мы представим в главе 7.В данной главе мы будем упоминать об этой возможности там, где это уместно, а также предоставим вам шанс применить такие методы в упражнениях к следующим главам.

86

Как всегда в случае дилеммы заключенных, если бы компании могли вступить в сговор и установить высокие цены, обе получили бы более высокий выигрыш 2. Однако такой исход игры не является равновесным, поскольку у каждой компании остается соблазн обмануть другую, чтобы обеспечить гораздо более высокий выигрыш 6.

87

Некоторые считают, что природа — это недоброжелательный игрок, который играет с нами в игру с нулевой суммой, а значит, его выигрыши повышаются, когда наши падают. Например, если мы забыли взять зонтик, с большей вероятностью пойдет дождь. Мы понимаем такую позицию, но ее не подтверждают реальные статистические данные.

88

Питчер — игрок защищающейся команды, подающий мяч; бэттер — игрок команды нападения, отбивающий мяч питчера битой. Прим. ред.

89

Когда случайное событие имеет только два возможных исхода, часто говорят о шансах в пользу или против одного из них. Если обозначить два возможных исхода символами A и Б, вероятность исхода A составляет p , а вероятность исхода Б равна (1 − p ), тогда соотношение p / (1 − p ) представляет собой шансы в пользу A, а обратное соотношение (1 − p ) / p дает шансы против A. Следовательно, если Эверт выберет стратегию ПД с вероятностью 0,25 (25 %), шансы против того, что она выберет ПД, составляют 3 к 1, а шансы в пользу этого выбора равны 1 к 3. Эта терминология часто используется в контексте игр, в которых заключаются пари, так что те из вас, кто потратил на такие игры свою молодость, должны быть лучше знакомы с этими терминами. Тем не менее такое употребление терминов не всегда распространимо на ситуации, в которых возможны три или более исхода, поэтому мы избегаем их использования в данной книге.

90

Теория игр исходит из того, что игроки должны рассчитывать и пытаться максимизировать свой ожидаемый выигрыш в случае вероятностных комбинаций стратегий или исходов игры. Мы более подробно рассмотрим этот вопрос в приложении к данной главе, а пока будем использовать данную концепцию, но с одной важной оговоркой. Слово «ожидаемый» в словосочетании «ожидаемый выигрыш» — это специальный термин из теории вероятностей и статистики, которым просто обозначается взвешенное по вероятности среднее значение. Слово «ожидаемый» не означает, что игрок должен рассчитывать на что-то как на то, что ему причитается по праву.

91

Не всякая смешанная стратегия гарантирует более высокий результат, чем чистые стратегии. Например, если Эверт смешает стратегии ПЛ и ПД в соотношении 50 на 50, Навратилова сможет сократить ожидаемый выигрыш Эверт до 50, то есть в точности до уровня, обеспечиваемого чистой стратегией ПЛ. А комбинация, в которой стратегии ПЛ отведено менее 30 %, будет для Эверт хуже чистой стратегии ПЛ. Мы предлагаем вам проверить правильность этих утверждений как пример полезного упражнения по отработке навыков вычисления ожидаемых выигрышей и сравнения стратегий.

92

Если в той или иной численной задаче, которую вы пытаетесь решить, линии ожидаемых выигрышей в случае чистых стратегий не пересекаются, это говорит о том, что одна чистая стратегия является наилучшей для всех смешанных стратегий соперника, то есть она всегда будет наилучшим ответом.

93

Вероятность того, что каждый игрок выберет Starbucks в случае равновесия, равна 2/3. Вероятность того, что каждый из них выберет Local Latte, составляет 1/3. Вероятность того, что один игрок выберет Starbucks, тогда как другой — Local Latte, равна (2/3) × (1/3). Однако это может произойти двумя разными способами (один из них, когда Гарри выберет Starbucks, а Салли Local — Latte, а второй, когда оба игрока сделают противоположный выбор). Следовательно, общая вероятность того, что Гарри и Салли не встретятся, составляет 2 × (2/3) × (1/3). Более подробная информация об алгебре вероятностей представлена в приложении к данной главе.

94

В главе 12мы рассмотрим другой тип устойчивости, а именно эволюционную устойчивость. В эволюционном контексте вопрос состоит в том, может ли среди участников игры в труса сформироваться и сохраниться устойчивая совокупность игроков, выбирающих варианты «ехать прямо» и «свернуть».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x