Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
270
Более подробный анализ этого примера можно найти здесь: Riker, Liberalism Against Populism, pp. 152–57.
271
Этот результат можно найти в книге: P. Ordeshook and T. Palfrey, “Agendas, Strategic Voting, and Signaling with Incomplete Information,” American Journal of Political Science, vol. 32, no. 2 (May 1988), pp. 441–66. Представленный ниже пример основан на результатах анализа, выполненного Ордешуком и Палфри.
272
Тип «центрист» может повлиять на результат голосования, только если остальные голоса распределены между вариантами П и С поровну. Следовательно, должно быть ровно ( n — 1)/2 участников голосования правого типа, выбравших вариант С в первом туре, и ( n — 1)/2 остальных голосующих, выбравших вариант П. Если проголосовавшие за вариант П относятся к «левому» типу, тогда вариант П не победит во втором туре голосования, а «центрист» получит выигрыш 0. Для того чтобы выигрыш «центриста» составил 1, необходимо, чтобы все участники голосования, выбравшие вариант П, относились к типу «центрист». Вероятность наступления этого события составляет [ p ц/( p л + p ц)] ( n –1)/2; тогда ожидаемый выигрыш «центриста» от голосования в соответствии со своими предпочтениями будет таким, как указано выше. См. Ordeshook and Palfrey, p. 455.
273
Более подробную теоретическую информацию об этой теореме можно найти здесь: A. Gibbard, “Manipulation of Voting Schemes: A General Result,” Econometrica, vol. 41, no. 4 (July 1973), pp. 587–601, and M. A. Satterthwaite, “Strategy-Proofness and Arrow’s Conditions,” Journal of Economic Theory, vol. 10 (1975), pp. 187–217. Теорема носит имена обоих ученых, поскольку они доказали ее независимо друг от друга.
274
Информацию о классификации Ханну Нурми можно найти здесь: H. Nurmi, Comparing Voting Systems (Norwell, Mass.: D. Reidel, 1987).
275
Любое сходство между нашими гипотетическими кандидатами и реальными прошлыми или будущими кандидатами в Соединенных Штатах не означает реальный анализ или прогноз их показателей в контексте равновесия Нэша. Распределение избирателей в нашем примере также не отображает реальных предпочтений американских избирателей.
276
В целях упрощения анализа мы не принимаем во внимание те сложности, которые создает коллегия выборщиков, и исходим из предположения, что значение имеют только голоса, поданные избирателями на президентских выборах.
277
Экономисты изучают этот вывод в контексте модели пространственного расположения Хотеллинга. См. Harold Hotelling, “Stability in Competition,” Economic Journal, vol. 39, no. 1 (March 1929), pp. 41–57.
278
Однако распределение идеальных позиций избирателей на шкале политического спектра необязательно имеет только один максимум; например, на гистограмме на рис. 15.7присутствует два максимума — в точках Л и КП.
279
Это та же схема, которую мы использовали в главе 11и главе 12для анализа больших совокупностей отдельных членов.
280
Строго говоря, здесь изображены не функции распределения, а функции плотности распределений. Прим. ред.
281
Мы не будем углубляться в техническую сторону теории распределения или интегрального исчисления, необходимого для вычисления точной доли избирателей, находящихся слева или справа от определенной позиции на непрерывной шкале политического спектра. Здесь мы приводим только ту информацию, которая убедит вас в том, что теорема о медианном избирателе справедлива и для непрерывного распределения.
282
Такая позиция, смещенная влево от x на бесконечно малую величину, возможна в случае непрерывного распределения. В нашем примере с дискретным распределением кандидаты вынуждены выбирать в точности ту же позицию.
283
John Allen Paulos, A Mathematician Reads the Newspaper (New York: Basic Books, 1995), pp. 104–106.
284
Список ссылок на источники дополнительной информации по теории и практике аукционов можно найти в заключительном разделеданной главы.
285
Работа Роджера Майерсона «Оптимальная структура аукционов» (“Optimal Auction Design,” Mathematics of Operations Research, vol. 6, no. 1 (February 1981), pp. 58–73) была одной из первых в области общей теории аукционов и важной частью работы, за которую он получил Нобелевскую премию по экономике в 2007 году. Книга Пола Клемперера «Аукционы: теория и практика» (Paul Klemperer, Auctions: Theory and Practice (Princeton: Princeton University Press, 2004) дает самую лучшую современную трактовку этой теории.
286
В качестве примера можно привести аукционы по продаже прав на шельфовое бурение нефтяных скважин в США, в том числе прав на бурение в Мексиканском заливе и у побережья Аляски. В 2002 году в штате Пенсильвания на аукционе было продано около четверти миллиона акров (100 тысяч гектаров) лесных угодий штата; это был первый анонимный интернет-аукцион, проходивший в реальном времени.
287
Оценки 10 компаний будут находиться в диапазоне от 0,9 миллиарда долларов до 1,1 миллиарда долларов (по 100 миллионов с каждой стороны от значения 1 миллиард долларов). Низкая и высокая оценки в среднем будут располагаться в крайних точках распределения.
288
См. Steven Landsburg, The Armchair Economist (New York: Free Press, 1993), p. 175.
289
Richard Thaler, “Anomalies: The Winner’s Curse,” Journal of Economic Perspectives, vol. 2, no. 1 (Winter 1988), pp. 191–201.
290
Викри был одним из самых оригинальных мыслителей в области экономики за прошедших четыре десятилетия. В 1996 году он стал лауреатом Нобелевской премии за исследования по разработке механизмов проведения аукционов и процедур раскрытия информации. К сожалению, Викри умер всего за три дня до объявления о присуждении ему Нобелевской премии.
291
Один из нас (Диксит) выставил на аукцион билеты стоимостью 10 долларов на посещение своего занятия по стратегическим играм и заработал за счет группы из 20 студентов прибыль в размере 60 долларов. В Принстоне существует традиция в конце семестра выражать профессору благодарность аплодисментами. Однажды Диксит предложил 20 долларов студенту, который будет непрерывно аплодировать дольше всех. Это открытый аукцион «платят все» с натуральной оплатой (в виде аплодисментов). Несмотря на то что большинство студентов выбыли из дальнейшей борьбы через 5–20 минут, трое продержались дольше всех: целых 4,5 часа!
292
Функция P ( x ) называется функцией кумулятивного распределения вероятностей для случайной переменной x . Более знакомая функция плотности вероятностей переменной — это ее производная P ´( x ) = p ( x ). В таком случае p ( x ) обозначает вероятность того, что переменная примет значение, попадающее в небольшой интервал от x до x + dx .
293
Ожидаемая цена предложения любого отдельно взятого игрока рассчитывается как ожидаемое значение x с помощью функции плотности распределения вероятностей p ( x ). В данном примере p ( x ) = P ´( x ) = [1/( n — 1)] x (2 — n )/( n –1), а ожидаемое значение x — это сумма или интеграл от 0 до 1, а именно ∫ x p ( x ) dx = 1/ n.
Читать дальшеИнтервал:
Закладка: