Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первый этап игры отображен в виде таблицы выигрышей в верхнем левом квадранте рис. 6.1. Вообразите его как первый этаж дома на дереве, на котором находятся четыре «комнаты». Комната, расположенная в северо-западном углу, соответствует ходам «не инвестировать», которые делают на первом этапе обе компании. Если принятые решения приводят компанию в эту комнату, дальше у нее нет никаких вариантов выбора, а значит, можно ассоциировать эту комнату с концевым узлом дерева из главы 3и показать выигрыши в ячейке таблицы (в данном случае для обеих компаний он составляет 0). Тем не менее все остальные комбинации действий двух компаний ведут в другие комнаты, в которых компании делают дальнейший выбор, поэтому мы еще не можем показать выигрыши в этих ячейках. Вместо этого мы показываем ветви, ведущие на второй этаж. В комнатах, расположенных в северо-восточном и юго-западном углах, отображены только выигрыши компании, решившей не инвестировать; ветви, исходящие из каждой из этих комнат, приводят нас к решениям соответствующей компании на втором этапе. Комната в юго-восточном углу приводит к многокомнатной структуре второго этажа дома на дереве, которая представляет игру в ценообразование второго этапа, разыгрываемую лишь в случае, если обе компании инвестировали на первом этапе. Эта структура второго этажа состоит из четырех комнат, соответствующих четырем комбинациям ходов двух компаний в игре в ценообразование.

Все ветви и комнаты второго этажа подобны концевым узлам дерева игры, а значит, мы можем показать выигрыши в каждом из этих случаев. Выражены они в виде операционной прибыли каждой компании за вычетом предшествующих инвестиционных затрат и исчисляются в миллиардах долларов.

Рассмотрим ветвь, ведущую в юго-западный угол на рис. 6.1. Игра перемещается в этот угол, только если CrossTalk решит инвестировать в покупку волоконно-оптической сети. Тогда при выборе высокой цены операционная прибыль CrossTalk составит 400 долларов × 60 миллионов = 24 миллиарда долларов, и после вычитания 10 миллиардов инвестиционных затрат будет получен ее выигрыш — 14 миллиардов долларов, что мы записываем как выигрыш 14. В том же углу при выборе CrossTalk низкой цены ее операционная прибыль составит 200 долларов × 80 миллионов = 16 миллиардов долларов, что после вычитания первоначальных инвестиций даст выигрыш в размере 6 миллиардов долларов. В этой ситуации выигрыш GlobalDialog равен 0, как отображено в юго-западном углу рис. 6.1; выигрыш 0 компании CrossTalk при аналогичных расчетах для GlobalDialog показан в северо-восточной комнате таблицы игры, соответствующей первому этапу.

Если обе компании решат инвестировать, обе перейдут к игре в ценообразование, отображенной в юго-восточном углу рисунка. Если обе компании предпочтут высокую цену на втором этапе, каждая получит операционную прибыль 400 долларов × 30 миллионов (половина рынка), или 12 миллиардов долларов; после вычитания 10 миллиардов долларов инвестиционных затрат у каждой компании останется по 2 миллиарда долларов чистой прибыли, или выигрыш 2. Если обе компании выберут низкую цену на втором этапе, каждая получит операционную прибыль 200 долларов × 40 миллионов = 8 миллиардов долларов и после вычитания 10 миллиардов долларов инвестиционных затрат останется с чистым убытком в размере 2 миллиардов долларов, или выигрышем −2. И наконец, если одна компания установит высокую цену, а другая низкую, то вторая получит прибыль 200 долларов × 80 миллионов = 16 миллиардов долларов, что обеспечит ей выигрыш 6, тогда как первая вообще не получит операционной прибыли и просто потеряет вложенные 10 миллиардов долларов с выигрышем −10.

Как и в любой многоэтапной игре, представленной в главе 3, мы должны решить эту игру в обратном порядке, начиная с игры второго этапа. В двух задачах с принятием решений о ценообразовании каждой компанией мы сразу же видим, что выбор высокой цены приносит более крупный выигрыш. Мы фиксируем это, выделив данный выигрыш более крупным шрифтом.

Игру в ценообразование, разыгрываемую на втором этапе, необходимо решать с помощью методов, представленных в главе 4. Несложно заметить, что она относится к категории «дилемма заключенных». «Низкая цена» — это доминирующая стратегия для каждой компании; следовательно, исход игры — комната в юго-восточном углу таблицы игры второго этажа: каждая компания получает выигрыш −2 [86].

Обратные рассуждения показывают, что на первом этапе следует оценивать каждую конфигурацию ходов, сначала проанализировав равновесие в игре второго этапа (или оптимальное решение на втором этапе) и полученные в результате выигрыши. Это позволит подставить только что рассчитанные выигрыши в ранее незаполненные или частично заполненные комнаты на первом этаже дома на дереве. Такая подстановка дает нам первый этаж с известными выигрышами, представленный на рис. 6.2.

Рис. 6.2.Инвестиционная игра первого этапа (после подстановки выигрышей, полученных методом обратных рассуждений на основании равновесия на втором этапе)

Теперь можем использовать методы из главы 4 для решения этой игры с одновременными ходами. Вы должны сразу же распознать игру, представленную на рис. 6.2, как игру в труса. В ней два равновесия Нэша, каждое из которых сводится к выбору одной компанией стратегии «инвестировать», а другой — «не инвестировать». Компания-инвестор получит огромную прибыль, поэтому каждая компания предпочтет то равновесие, в котором она будет инвестором, а другая компания — нет. В главе 4мы кратко описали способы, позволяющие выбрать одно из двух равновесий, и указали на то, что каждая компания может попытаться получить предпочтительный исход, но это приведет к тому, что обе решат инвестировать и обе понесут убытки. На самом деле именно это и произошло в реальной игре такого рода. В главе 7мы проанализируем данный тип игр более подробно и покажем, что они имеют третье равновесие Нэша — в смешанных стратегиях.

Исходя из анализа рис. 6.2, в нашем примере в игре первого этапа нет единственного равновесия Нэша. Это не особо серьезная проблема, поскольку мы можем оставить решение неоднозначным в той степени, в которой это было сделано выше. Было бы гораздо хуже, если бы единственное равновесие Нэша отсутствовало в игре второго этапа. Тогда было бы очень важно указать точный принцип выбора исхода игры с тем, чтобы определить выигрыши на втором этапе и использовать их в процессе обратных рассуждений в отношении первого этапа.

Игра в ценообразование второго этапа, показанная в нижней правой ячейке таблицы на рис. 6.1, — одна часть полной двухэтапной игры. При этом она представляет собой полноценную игру с полностью заданной системой игроков, стратегий и выигрышей. Для того чтобы точнее описать двойственную природу этой игры, ее называют подыгройполной игры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x