Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Y = A + BX–CX 2 =

В окончательном варианте формулы X присутствует только в последнем члене где - фото 40 В окончательном варианте формулы X присутствует только в последнем члене где - фото 41 В окончательном варианте формулы X присутствует только в последнем члене где - фото 42

В окончательном варианте формулы X присутствует только в последнем члене, где содержащий это значение квадрат вычитается (помните, что C > 0). Все выражение максимизируется в случае, если его вычитаемый член становится минимальным, что и происходит, если X = B / 2 C . Что и требовалось доказать!

Такой метод дополнения до полного квадрата работает для квадратичных функций, поэтому применим к большинству примеров, рассматриваемых в книге. Однако мы должны признать, что в нем присутствует некий элемент магии. Метод с использованием дифференциального исчисления носит более общий методологический характер, так что изучение основ дифференциального исчисления окупится сторицей.

Глава 6. Сочетание последовательных и одновременных ходов

* * *

В главе 3мы рассматривали игры исключительно с последовательными ходами, а глава 4и глава 5посвящены играм только с одновременными ходами. Мы сформулировали концепции и методы анализа, применимые к чистым типам игр, такие как дерево игры и равновесие обратных рассуждений для игр с последовательными ходами, и таблицы выигрышей и равновесие Нэша в играх с одновременными ходами. Однако в реальной жизни многие стратегические ситуации содержат элементы взаимодействия обоих типов игр. Кроме того, хотя мы использовали дерево игры (экстенсивную форму) в качестве единственного метода иллюстрации игр с последовательными ходами и таблицу игры (стратегическую форму) как единственный метод иллюстрации игр с одновременными ходами, каждая из этих форм представления применима к играм любого типа.

В данной главе мы проанализируем многие из этих возможностей. Сначала покажем, как игры, сочетающие последовательные и одновременные ходы, решаются с помощью комбинации деревьев игр и таблицы выигрышей, а также подходящего объединения анализа равновесия обратных рассуждений и равновесия Нэша, затем рассмотрим последствия изменения характера взаимодействия в конкретной игре. В частности, проанализируем результат изменения правил игры в целях преобразования игры с последовательными ходами в игру с одновременными ходами и наоборот и изменения порядка ходов в игре с последовательными ходами. Эта тема позволяет сравнить равновесия, найденные посредством концепции обратных рассуждений в игре с последовательными ходами, с равновесиями, найденными с помощью концепции равновесия Нэша в одновременной версии той же игры. На основании такого сравнения мы расширим концепцию равновесий Нэша на игры с последовательными ходами. Оказывается, равновесие обратных рассуждений — частный случай равновесия Нэша, обычно называемый уточнением.

1. Игры с одновременными и последовательными ходами

Как уже неоднократно отмечалось ранее, большинство реальных игр, с которыми вы столкнетесь, будут состоять из множества более мелких компонентов, причем каждый может подразумевать игру либо с одновременными, либо с последовательными ходами, поэтому игра в целом потребует от вас знания обоих типов. Самый очевидный пример стратегического взаимодействия, содержащего как последовательную, так и одновременную составляющую, — это игры между двумя (или более) игроками, продолжающиеся на протяжении длительного периода. За год совместного проживания в комнате вы можете сыграть с соседом в ряд разных игр с одновременными ходами: ваши действия в любой из них зависят от истории вашего общения до нынешнего момента и ваших ожиданий в отношении дальнейших коммуникаций. Кроме того, любые спортивные соревнования, взаимодействие между конкурирующими компаниями в отрасли и политические отношения — все это последовательно связанные серии игр с одновременными ходами. Анализ таких игр подразумевает использование набора инструментов, представленных в главе 3(дерево игры и равновесие обратных рассуждений), главе 4и главе 5(таблица выигрышей и равновесие Нэша) [85]. Единственное различие состоит в том, что фактический анализ усложняется по мере увеличения количества ходов и взаимодействий.

А. Двухэтапные игры и подыгры

Наш основной иллюстративный пример таких ситуаций касается двух вымышленных крупных телекоммуникационных компаний CrossTalk и GlobalDialog. Каждая из них решает, стоит ли инвестировать 10 миллиардов долларов в покупку волоконно-оптической сети; решение обеими принимается одновременно. Если ни одна не выберет инвестиции, это конец игры. Если одна сделает инвестиции, а другая нет, то компания-инвестор должна установить цены на телекоммуникационные услуги. Она может назначить либо высокую цену, позволяющую привлечь 60 миллионов клиентов, каждый из которых принесет компании операционную прибыль в размере 400 долларов, либо низкую цену, позволяющую привлечь 80 миллионов клиентов, каждый из которых обеспечит компании операционную прибыль в размере 200 долларов. Если обе компании купят волоконно-оптические сети и выйдут на рынок, то ценообразование станет второй игрой с одновременными ходами. Каждая компания может установить либо высокую, либо низкую цену. Если обе предпочтут высокую цену, они разделят рынок поровну и каждая получит 30 миллионов клиентов и операционную прибыль 400 долларов на одного клиента. Если обе выберут низкую цену, они тоже разделят рынок поровну и каждая получит 40 миллионов клиентов и операционную прибыль 200 долларов на одного клиента. Если одна компания установит высокую цену, а другая низкую, то компания с низкой ценой получит все 80 миллионов клиентов, а компания с высокой ценой не получит ничего.

Взаимодействие между CrossTalk и GlobalDialog представляет собой двухэтапную игру. Из четырех возможных комбинаций вариантов выбора в случае игры с одновременными ходами на первом (инвестиционном) этапе одна комбинация завершает игру, две приводят к принятию решения только одним игроком на втором этапе (ценообразования), а четвертая сводится к игре с одновременными ходами (игре в ценообразование) на втором этапе. Игра в графическом виде представлена на рис. 6.1.

Рис. 6.1.Двухэтапная игра, состоящая из последовательных и одновременных ходов

В целом рис. 6.1 иллюстрирует дерево игры, но более сложное, чем в главе 3. Его можно представить как своего рода «дом на дереве» с несколькими уровнями, показанными в разных частях одного двумерного рисунка, как будто вы смотрите на него с вертолета, зависшего непосредственно над ним.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x