Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рис. 6.7.Игра в теннис с одновременными ходами, представленная в экстенсивной форме
Для того чтобы нарисовать дерево этой игры, необходимо выбрать одну ее участницу, например Эверт, которая будет делать выбор в начальном узле дерева. Ветви дерева, соответствующие двум вариантам выбора — ПЛ («по линии») и ПД («по диагонали»), заканчиваются в двух узлах, в каждом из которых делает выбор Навратилова. Однако поскольку на самом деле ходы в этой игре фактически одновременные, Навратилова должна сделать выбор, не зная, что выбрала Эверт. То есть Навратилова должна делать выбор, не зная, в каком узле она находится, — в том, к которому ведет ветвь Эверт ПЛ, или в том, к которому ведет ветвь ПД. Наша древовидная схема должна каким-то образом отображать эту нехватку информации у Навратиловой.
Мы проиллюстрируем стратегическую неопределенность Навратиловой в отношении узла, в котором она должна принимать решение, нарисовав овал, вмещающий в себя два соответствующих узла. (В качестве альтернативы можно соединить их пунктирной линией; она используется для того, чтобы отличить ее от сплошных линий, которые представляют ветви дерева.) Узлы, находящиеся в пределах этого овала или круга, называются информационным множествомигрока, делающего в них ходы. Такое множество указывает на наличие у этого игрока несовершенной информации: он не может провести различие между узлами множества на основании имеющейся информации (поскольку не может видеть ход другого игрока до того, как сделает свой ход). В соответствии с этим стратегический выбор, делаемый игроком в пределах одного информационного множества, должен подразумевать один и тот же ход во всех узлах, входящих в это множество. Иными словами, Навратилова должна выбрать либо ПЛ, либо ПД в обоих узлах данного информационного множества. Она не может выбрать ПЛ в одном узле и ПД в другом, как на рис. 6.5б, где представлена игра с последовательными ходами и Навратилова ходила второй.
В связи с этим мы должны внести коррективы в наше определение стратегии. В главе 3мы определили ее как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле , в котором наступает его очередь ходить в соответствии с правилами игры. Теперь мы должны более точно определить стратегию как исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом информационном множестве , в узлах которого наступает его очередь ходить в соответствии с правилами игры.
Концепция информационного множества также актуальна, когда игрок сталкивается с внешней неопределенностью в отношении некоторых условий, влияющих на его решение, а не ходов другого игрока. Например, фермер, сажающий ту или иную культуру, не знает, какая будет погода в период ее вегетации, хотя на основании своего опыта или метеорологических прогнозов может определить вероятность альтернативных возможностей. Мы можем рассматривать погоду как случайный выбор, который делает внешний игрок по имени «природа», не получающий никаких выигрышей, а просто выбирающий исходя из общеизвестных вероятностей [87]. В таком случае мы можем включить различные узлы, соответствующие ходам природы, в информационное множество фермера, ограничивающее его выбор одним и тем же действием во всех узлах. Эта ситуация проиллюстрирована на рис. 6.8.
Рис. 6.8.Природа и информационное множество
С помощью понятия информационного множества мы можем формализовать концепции совершенной и несовершенной информации в игре, которые ввели в главе 2 ( раздел 2.Г). В игре присутствует совершенная информация, если в ней нет ни стратегической, ни внешней неопределенности, что происходит в случае отсутствия в игре информационных множеств, содержащих два или более узла. Иными словами, в игре имеется совершенная информация, если все ее информационные множества содержат единичные узлы.
Хотя с концептуальной точки зрения это достаточно простое представление, оно не упрощает способа решения игры. По этой причине мы используем его только тогда, когда оно позволяет проще передать ту или иную мысль. В главе 8и главе 14приведено несколько примеров представления игр с помощью информационных множеств.
Б. Представление и анализ игр с последовательными ходами в стратегической формеРассмотрим игру ( рис. 6.6в) с последовательными ходами в монетарную и фискальную политику, в которой Конгресс ходит первым. Допустим, нам нужно представить эту игру в нормальной или стратегической форме, то есть в виде таблицы выигрышей, строки и столбцы которой — стратегии двух игроков. Следовательно, мы должны начать с определения стратегий.
Для Конгресса, делающего первый ход, перечислить стратегии не составит труда. Существует только два хода, «баланс» и «дефицит», они же являются стратегиями. Что касается игрока, делающего второй ход, то здесь все гораздо сложнее. Не забывайте, что стратегия — это исчерпывающий план действий, указывающий, какие действия должен предпринимать игрок в каждом узле, в котором наступает его очередь ходить. Поскольку ФРС получает право сделать ход в двух узлах (а также потому, что, согласно нашему предположению, ходы в этой игре действительно выполняются последовательно, а значит, эти два узла не объединяются в информационное множество) и может выбрать либо стратегию «низкие ставки», либо «высокие ставки» в каждом из узлов, существует четыре комбинации ее вариантов выбора: 1) «низкие ставки», если «баланс»; «высокие ставки», если «дефицит» (в сокращенном виде «Н, если Б; В, если Д»); 2) «высокие ставки», если «баланс»; «низкие ставки», если «дефицит» (сокращенно «В, если Б; Н, если Д»); 3) «низкие ставки» всегда; 4) «высокие ставки» всегда.
Полученная в результате матрица выигрышей два на четыре представлена на рис. 6.9. Последние два столбца не отличаются от тех, которые были в матрице выигрышей два на два, составленной для игры, в которой ходы выполнялись одновременно ( рис. 6.6a). Это объясняется тем, что если ФРС выберет стратегию, согласно которой она делает одни и те же ходы всегда, то это равносильно тому, что ФРС делала бы свои ходы без учета того, что сделал Конгресс, то есть их ходы были бы как будто одновременными. Однако вычисление выигрышей в первых двух столбцах, где ход ФРС зависит от первого хода Конгресса, требует более пристального внимания.
Рис. 6.9.Игра с последовательными ходами с фискальной и монетарной политикой, представленная в стратегической форме
Для иллюстрации рассмотрим ячейку на пересечении первой строки и второго столбца. Здесь Конгресс выбирает «баланс», а ФРС — «В, если Б; Н, если Д». Учитывая выбор Конгресса, фактическим выбором ФРС в рамках этой стратегии будет стратегия «высокие ставки». В таком случае выигрыши здесь те же, что и в сочетании стратегий «баланс» и «высокие ставки», а именно 1 для Конгресса и 3 для ФРС.
Читать дальшеИнтервал:
Закладка: