Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Равновесие, найденное методом обратных рассуждений, называется совершенным равновесием подыгрыи представляет собой совокупность стратегий (исчерпывающих планов действий), по одной на каждого игрока, при которой в каждом узле дерева игры, независимо от того, лежит ли он на ее равновесном пути, продолжение одной и той же стратегии в подыгре, начинающейся в данном узле, будет оптимальным для игрока, совершающего там действие. Проще говоря, совершенное равновесие подыгры требует, чтобы игроки использовали стратегии, образующие равновесие Нэша в каждой подыгре более крупной игры.

Как правило, в играх с конечными деревьями и совершенной информацией, в которых участники могут наблюдать все предыдущие действия, предпринятые всеми игроками, а значит, нет нескольких узлов, входящих в одно информационное множество, анализ методом обратных рассуждений позволяет найти единственное (за исключением элементарных и уникальных случаев равного распределения выигрышей) совершенное равновесие подыгры. Подумайте вот о чем: если проанализировать любую подыгру, которая начинается в последнем узле принятия решений последним игроком, делающим ход, то его наилучший выбор — стратегия, обеспечивающая ему самый высокий выигрыш. Но это и есть действие, выбранное в ходе обратных рассуждений. По мере перемещения игроков по дереву игры в обратном направлении обратные рассуждения исключают все нецелесообразные стратегии, в том числе недостоверные угрозы или обещания, в результате чего совокупность действий, предпринятых в конечном счете, представляет собой совершенное равновесие подыгры. Следовательно, в контексте данной книги совершенное равновесие подыгры — это просто еще одно замысловатое название равновесия обратных рассуждений. На более продвинутых уровнях теории игр, где игры включают в себя сложные структуры данных и информационные множества, совершенное равновесие подыгры имеет более глубокий смысл.

4. Игры с тремя участниками

До сих пор мы обсуждали в данной главе только игры с двумя участниками, каждый из которых делает по два хода. Однако эти же методы применимы и к более крупным и общим играм. Мы проиллюстрируем это на примере игры «уличный сад» из главы 3. В частности, 1) изменим правила игры с последовательного на одновременное выполнение ходов, а также 2) сохраним последовательные ходы, но покажем и проанализируем игру в стратегической форме. Сначала мы воспроизведем дерево игры с последовательными ходами ( рис. 3.6) на рис. 6.10 и напомним вам о равновесии обратных рассуждений.

Рис. 6.10.Игра «уличный сад» с последовательными ходами

Равновесная стратегия Эмили, делающей первый ход, — просто «не вносить вклад». Участница игры, которая ходит второй, выбирает из четырех возможных стратегий (выбор из двух ответных ходов в двух узлах) и останавливается на стратегии «не вносить вклад» (Н), если Эмили выбрала стратегию «внести вклад», и на стратегии «внести вклад» (В), если Эмили выбрала стратегию «не вносить вклад», или в сокращенном виде «Н, если В; В, если Н», или даже просто «НВ». В распоряжении Талии 16 возможных стратегий (выбор из двух ответных ходов в каждом из четырех узлов), а ее равновесная стратегия — «Н после В Эмили и Н Нины, Н после их ВН, Н после их НВ и Н после их НН», или сокращенно «НВВН».

Не забывайте о причине такого выбора. У участницы игры, делающей ход первой, есть возможность выбрать вариант «не вносить вклад», зная, что две другие участницы поймут, что без их вклада сада не будет, а они хотят его достаточно сильно для того, чтобы инвестировать в его создание.

Теперь давайте изменим правила игры таким образом, чтобы сделать ее игрой с одновременными ходами. (В главе 4мы решили версию этой игры с одновременными ходами, получив несколько иные выигрыши; здесь мы используем выигрыши из главы 3.) Матрица выигрышей представлена на рис. 6.11. Анализ наилучших ответов позволяет без труда определить, что в этой игре четыре равновесия Нэша.

Рис. 6.11.Игра «уличный сад» с одновременными ходами

В трех равновесиях Нэша игры с одновременными ходами две ее участницы вносят вклад, тогда как третья нет. Эти равновесия аналогичны равновесию обратных рассуждений в игре с последовательными ходами. По существу, каждое из них соответствует равновесию обратных рассуждений в последовательной игре с определенным порядком выполнения ходов. Кроме того, любой заданный порядок ходов в последовательной версии игры дает одну и ту же таблицу выигрышей игры с одновременными ходами.

Но в данном случае есть и четвертое равновесие Нэша, при котором ни одна из участниц игры не вносит вклад в создание сада. Принимая во внимание выбор двух других участниц игры (а именно — «не вносить вклад»), один игрок не в силах создать красивый сад и по этой причине тоже останавливается на варианте «не вносить вклад». Таким образом, при переходе от последовательных к одновременным ходам преимущество первого хода утрачивается. При этом возникают несколько равновесий, но лишь в одном из них сохраняется высокий выигрыш участницы игры, сделавшей первый ход в самом начале.

Далее мы вернемся к версии игры с последовательными ходами (первой ходит Эмили, второй Нина, третьей Талия), но представим ее в нормальной или стратегической форме. В игре с последовательными ходами у Эмили две чистые стратегии, у Нины 4, а у Талии 16; это подразумевает построение таблицы выигрышей 2 на 4 на 16. При использовании тех же соглашений, что и при построении таблиц для игры с тремя участниками в главе 4, для отображения данной игры понадобилась бы таблица с 16 «страницами» таблиц выигрышей два на четыре. Это слишком громоздко, поэтому мы предпочли переставить участниц игры. Пусть Талии соответствуют строки, Нине столбцы, а Эмили страницы. Тогда все, что нужно для представления данной игры, — это таблица 16 на 4 на 2, показанная на рис. 6.12. Порядок отображения выигрышей по-прежнему соответствует нашему прежнему соглашению об их перечислении в таком порядке: строка, столбец, страница; то есть в нашем примере Талия, Нина, Эмили.

Рис. 6.12.Игра «уличный сад» в стратегической форме

Как и в игре с монетарно-фискальной политикой между ФРС и Конгрессом, в игре «уличный сад» с одновременными ходами множество равновесий Нэша (в упражнении S8мы предложим вам их найти) и только одно совершенное равновесие подыгры, соответствующее равновесию обратных рассуждений, найденное на рис. 6.11. Хотя анализ наилучших ответов действительно позволяет отыскать все равновесия Нэша, итеративное исключение доминируемых стратегий может сократить совокупность равновесий до разумного количества, необходимого в данном случае. Такой процесс эффективен, поскольку позволяет определить стратегии, включающие недостоверные элементы (такие как «высокие ставки всегда» в случае ФРС в разделе 3.Б). Оказывается, исключение стратегий способно в итоге привести к получению единственного совершенного равновесия подыгры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x