Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В фактической таблице игры между командами нападения и защиты, представленной на рис. 7.7, отображены ожидаемые выигрыши каждой команды. Они представляют собой среднее между выигрышем V при успешной игре и 0 при неудачной. Например, ожидаемый выигрыш команды нападения, использующей стратегию «пробежка» в случае, если команда защиты ожидает стратегии «пробежка», составляет 0,6 × V + 0,4 × 0 = 0,6 V . Поскольку данная игра относится к категории игр с нулевой суммой, выигрыш команды защиты в этой ячейке равен –0,6 V . Аналогичным образом вы можете рассчитать выигрыши во всех остальных ячейках таблицы, чтобы убедиться, что значения, приведенные ниже, правильные.

Рис. 7.7.Игра «третий даун, один ярд»

При равновесии в смешанных стратегиях вероятность p того, что команда нападения выберет стратегию «пробежка», определяется свойством безразличия соперника. Стало быть, правильное значение p удовлетворяет следующему условию:

p [–0,6 V ] + (1 — p )[–0,8 V ] = p [–0,7 V ] + (1 — p )[–0,3 V ].

Обратите внимание, что мы можем разделить обе стороны этого равенства на V , чтобы полностью исключить V из процесса вычисления p [97]. Тогда упрощенное уравнение будет выглядеть так: –0,6 p — 0,8(1 — p ) = –0,7 p — 0,3(1 — p ), или 0,1 p = 0,5(1 — p ). Решив его, получим p = 5/6; следовательно, команда нападения с высокой вероятностью применит стратегию «пробежка» в своей комбинации стратегий. Такую безопасную игру часто называют «процентной игрой», потому что это нормальный ход игры в подобных ситуациях. Рискованная игра (стратегия «пас») разыгрывается лишь изредка, чтобы держать соперника в неведении или, говоря на языке футбольных комментаторов, «не давать защите расслабиться».

Интересный аспект этого результата состоит в том, что выражение для вычисления p совершенно не зависит от V . То есть, согласно теории, процентную и рискованную игру следует смешивать в равных пропорциях как в очень важных, так и во второстепенных ситуациях. Но этот результат противоречит интуитивным выводам многих людей, которые считают, что в более важных ситуациях рисковать следует реже. Длинный пас на третьем дауне с одним оставшимся ярдом приемлем в обычный октябрьский воскресный день, но делать такой пас во время Суперкубка слишком рискованно.

Так кто же прав: теория или интуиция? По всей вероятности, мнения читателей по этому вопросу разделятся. Некоторые будут утверждать, что спортивные комментаторы ошибаются, и с радостью обнаружат, что теоретические аргументы опровергают их заявления. Другие примут сторону комментаторов и будут доказывать, что важные матчи требуют более безопасной игры. Есть и те, кто считает, что ради более крупных призов следует больше рисковать, однако даже они не находят поддержки данной идеи в теории, а это говорит о том, что размер приза или ущерба вряд ли оказывает какое-либо влияние на вероятности чистых стратегий в смешанной стратегии.

Во многих предыдущих случаях возникновения расхождений между теорией и интуицией мы утверждали, что они кажущиеся и являются результатом неспособности сделать теорию настолько общей или глубокой, чтобы она охватывала все аспекты ситуации, в отношении которой делаются интуитивные выводы, и что улучшение теории позволяет устранить такие расхождения. В данном случае ситуация иная: проблема имеет фундаментальное значение для вычисления выигрышей от смешанных стратегий как взвешенных по вероятности средних значений, или ожидаемых выигрышей. И это отправная точка почти всех научных работ в современной теории игр [98].

6. Смешивание стратегий при наличии трех или более чистых стратегий у одного игрока

Наше обсуждение игр со смешанными стратегиями до сих пор ограничивалось только играми, в которых у каждого участника было по две чистые стратегии, а также их комбинации. Однако во многих стратегических ситуациях каждый игрок располагает б о льшим количеством чистых стратегий, поэтому мы должны подготовиться к вычислению равновесных смешанных стратегий и в подобных случаях. Но уровень сложности таких расчетов стремительно повышается. В поистине сложных играх для поиска равновесия в смешанных стратегиях нам пришлось бы прибегнуть к помощи компьютера. Тем не менее в некоторых небольших играх найти такое равновесие вручную не составит труда. И этот процесс вычислений позволит лучше понять, как работает равновесие, чем при анализе решения, сгенерированного компьютером. По этой причине в данном и следующем разделах мы поищем решение более крупных игр.

В этом разделе мы остановимся на играх с нулевой суммой, в которых у одного из игроков всего две чистые стратегии, тогда как у другого — больше. Как мы заметили, в таких играх игрок, имеющий три (или более) чистые стратегии, как правило, использует в равновесии только две. Остальные просто не входят в эту комбинацию стратегий, то есть вероятность их применения равна нулю. Мы должны лишь определить, какие стратегии используются в равновесии, а какие нет [99].

В качестве примера рассмотрим игру в розыгрыш очка в теннисе, включив в число стратегий Эверт третий тип возврата подачи. Помимо удара по линии и удара по диагонали теперь она может использовать свечу (более медленный, но и более высокий и длинный удар). Равновесие зависит от выигрышей в случае применения свечи против каждой из двух оборонительных стратегий Навратиловой. Начнем с самого вероятного случая, а затем перейдем к анализу особого случая.

А. Общий случай

Теперь в распоряжении Эверт три чистые стратегии: ПЛ (по линии), ПД (по диагонали) и СВ (свеча), а у Навратиловой только две: прикрывать удар ПЛ или прикрывать удар ПД. Таблица выигрышей этой новой игры представлена на рис. 7.8. Мы исходили из предположения, что выигрыши Эверт от стратегии СВ находятся в диапазоне между максимальным и минимальным выигрышами, которые она может получить от стратегий ПЛ и ПД, а также что они не слишком отличаются в случаях, когда Навратилова прикрывает ПЛ или ПД. В таблице отображены выигрыши не только от чистых стратегий, но и от трех чистых стратегий Эверт против q -комбинации Навратиловой. (Мы не показываем строку для p -комбинации Эверт, поскольку в этом нет необходимости. Для этого понадобились бы две вероятности, скажем, p 1в случае стратегии ПЛ и p 2в случае стратегии ПД; тогда вероятность стратегии СВ составила бы (1 — p 1 — p 2). В следующем разделе мы расскажем, как найти равновесные комбинации стратегий такого типа.)

Рис. 7.8.Таблица выигрышей в игре с розыгрышем очка с использованием стратегии «свеча»

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x