Дмитрий Елисеев - Рассказы о математике с примерами на языках Python и C

Тут можно читать онлайн Дмитрий Елисеев - Рассказы о математике с примерами на языках Python и C - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Рассказы о математике с примерами на языках Python и C
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Дмитрий Елисеев - Рассказы о математике с примерами на языках Python и C краткое содержание

Рассказы о математике с примерами на языках Python и C - описание и краткое содержание, автор Дмитрий Елисеев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Вниманию читателей представляется книга «Рассказы о математике с примерами на языках Python и C». В книге описаны различные истории или задачи, прямо или косвенно связанные с математикой (магические квадраты, простые числа и пр). Кратко рассмотрены более сложные моменты, например выполнение вычислений с помощью GPU.
Книга распространяется бесплатно, скачать оригинал в PDF можно на странице
.

Рассказы о математике с примерами на языках Python и C - читать онлайн бесплатно полную версию (весь текст целиком)

Рассказы о математике с примерами на языках Python и C - читать книгу онлайн бесплатно, автор Дмитрий Елисеев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

x3 = x1**10

print(x1, x2, x3)

Переменную также можно увеличить или уменьшить:

x1 += 1

x1 -= 10

print(x1)

Остаток от деления:

x2 = x1 % 6

print(x2)

Подсчитаем сумму элементов массива:

values = [1,2,3,5,10,15,20]

sum = 0

for p in values:

sum += p

print(sum)

Для более сложных операций необходимо подключить модуль math. Вычисление квадратного корня:

import math

print(math.sqrt(x3))

Условия задаются отступами, аналогично циклам:

print (x1)

if x1 % 2 == 0:

print("x1 четное число")

else:

print("x1 нечетное число")

Python может делать вычисления с большими числами, что достаточно удобно:

x1 = 12131231321321312312313131124141

print(10 * x1)

print(math.sqrt(x1))

Можно вывести даже факториал числа 1024, что не сделает ни один калькулятор:

print(math.factorial(1024))

В Си вычисление суммы элементов массива выглядит так:

int sum = 0;

for(int i=0; i

sum += values[i];

}

printf("Sum=%d\n", sum);

Пожалуй, этого не хватит чтобы устроиться на работу программистом, но вполне достаточно для понимания большинства примеров в книге. Теперь вернемся к математике.

2. Математические фокусы

Для «разминки» рассмотрим несколько фокусов, имеющих отношение к числам. Никаких особых сложностей в них нет, но их знание поможет развеселить или удивить знакомых знанием математики.

Умножение в уме числа на 11

Рассмотрим простой пример: 26 * 11 = 286

Сделать это в уме просто, если взять сумму чисел и поместить в середину: 26 * 11 = 2 [2+6] 6

Аналогично 43 * 11 = 473, 71 * 11 = 781 и так далее.

Чуть длиннее расчет, если сумма чисел больше либо равна 10. Но и тогда все просто: в середину кладется младший разряд, а 1 уходит в старший разряд:

47 * 11 = [4] [4 + 7 = 11] [7] = [4 + 1] [1] [7] = 517

94 * 11 = [9] [9 + 4 = 13] [4] = [10] [3] [4] = 1034

Возведение в квадрат числа, оканчивающегося на 5

Подсчитать это тоже просто. Если число рассмотреть как пару NM, то первая часть результата — это число N, умноженное на (N + 1), вторая часть числа — всегда 25. 35 2= [3 * 4] [25] = 12 25

Аналогично:

25 2= [2 * 3] 25 = 625 85 2= [8*9] 25 = 7225 и так далее.

Отгадывание результата

Попросим человека загадать любое число. Например 73. Затем чтобы еще больше запутать отгадывающего, попросим сделать следующие действия:

‐ удвоим число (146)

‐ прибавляем 12 (158)

‐ разделим на 2 (79)

‐ вычтем из результата исходное число (79 - 73 = 6)

В конце мы отгадываем, что результат — 6. Суть в том, что число 6 появляется независимо от того, какое число загадал человек.

Математически, это доказывается очень просто:

(2 * n + 12) / 2 - n = n + 6 - n = 6, независимо от значения n.

Отгадывание чисел

Есть другой фокус с отгадыванием чисел. Попросим человека загадать трехзначное число, числа в котором идут в порядке уменьшения (например 752). Попросим человека выполнить следующие действия:

‐ записать число в обратном порядке (257)

‐ вычесть его из исходного числа (752 - 257 = 495)

‐ к ответу добавить его же, только в обратном порядке (495 + 594)

Получится число 1089, которое «фокусник» и объявляет публике.

Математически это тоже несложно доказать.

‐ Любое число вида abc в десятичной системе счисления представляется так:

abc = 100 * a + 10 * b + c.

‐ Разность чисел abc - cba:

100 * a + 10 * b + c + 100 - 100 * c - 10 * b - a = 100 * a - 100 * c - (a - c) = 100 * (a - c) - (a - c)

‐ Т. к. по условию a - c > 0, то результат можно записать в виде:

100 * (a - c) - (a - c) = 100 * (a - c) - 100 + 90 + 10 - (a - c) = 100 * (a - c - 1) + 10 * 9 + (10 - a + c)

Мы узнали разряды числа, получающегося в результате:

a 1= a - c - 1, b 1= 9, c 1= 10 - a + c

‐ Добавляем число в обратном порядке:

a 1b 1c 1+ c 1b 1a 1= 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1

Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.

3. Число Пи

Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник — с помощью числа Пи. Число Пи — несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется везде, от кройки и шитья до расчетов гармонических колебаний в физике и радиотехнике.

Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение: Pi = 3,1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ — взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимедпредложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэйпридумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: π = 3,1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Кашив 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольфвычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).

Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:

‐ Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.

‐ Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.

‐ Число Пи является бесконечным.

‐ Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой «магии» тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дмитрий Елисеев читать все книги автора по порядку

Дмитрий Елисеев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Рассказы о математике с примерами на языках Python и C отзывы


Отзывы читателей о книге Рассказы о математике с примерами на языках Python и C, автор: Дмитрий Елисеев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x