Саймон Сингх - Симпсоны и их математические секреты

Тут можно читать онлайн Саймон Сингх - Симпсоны и их математические секреты - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Симпсоны и их математические секреты
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-00100-034-1
  • Рейтинг:
    2.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Саймон Сингх - Симпсоны и их математические секреты краткое содержание

Симпсоны и их математические секреты - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.
Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.
На русском языке публикуется впервые.

Симпсоны и их математические секреты - читать онлайн бесплатно полную версию (весь текст целиком)

Симпсоны и их математические секреты - читать книгу онлайн бесплатно, автор Саймон Сингх
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы можем также обнаружить присутствие числа e в совершенно другой области математики. Представьте себе, что вы на калькуляторе (если он достаточно «продвинутый») генерируете случайные числа от 0 до 1, а затем непрерывно суммируете их до тех пор, пока сумма не превысит единицу. Иногда вам понадобится два случайных числа, в большинстве случаев – три, время от времени – четыре или более, для того чтобы общая сумма превысила 1. Однако в среднем количество необходимых случайных чисел составляет 2,71828, а это, разумеется, и есть число e .

Существует еще много примеров, демонстрирующих, что число e играет массу разноплановых и фундаментальных ролей в разных областях математики. Это объясняет, почему любители чисел испытывают особую эмоциональную привязанность к числу e .

Один из таких поклонников – Дональд Кнут, почетный профессор Стэнфордского университета и подобная Богу фигура в мире информационных технологий. После написания Metafont (программного обеспечения для создания шрифтов) Кнут решил выпускать обновленные версии этого ПО под номерами, связанными с числом e . Это означает, что первая версия называлась Metafont 2, затем Metafont 2.7, затем Metafont 2.71 и так далее, вплоть до текущей версии Metafont 2.718281. Номер каждой новой версии представляет собой более точное приближение истинного значения числа e . Это только один из способов, с помощью которых Кнут выражает свой необычный подход к работе. Еще один пример – предметный указатель его фундаментального труда The Art of Computer Programming (том 1) [44], в котором запись «круговое определение» отсылает читателя к записи «определение, круговое», и наоборот.

Руководители Google, которых можно назвать супергиками, также большие поклонники числа e . Когда в 2004 году они продавали акции компании, было объявлено, что Google планирует заработать на этом 2 718 281 828 долларов, что равно числу е , умноженному на 1 миллион долларов. В том же году компания разместила на рекламном щите следующее объявление:

{первое простое число из 10 цифр подряд, найденное в числе e }. com

Единственный способ определить название этого сайта – проанализировать все цифры числа e и отыскать среди них последовательность из 10 цифр, представляющую собой простое число. Каждый человек, обладающий достаточными математическими знаниями, обнаружил бы, что первое простое число из десяти цифр, которое начинается с девяносто девятой цифры числа e, – это 7427466391. Посетив сайт www.7427466391.com, можно было бы увидеть, что это своего рода виртуальный дорожный знак, указывающий путь к другому сайту, который представляет собой портал для тех, кто хочет подать заявление о приеме в Google Labs [45].

Еще один способ выразить свое восхищение числом e – запомнить его цифры. В 2004 году Андреас Литцов из Германии запомнил и назвал 316 цифр, жонглируя при этом пятью шариками. Однако 25 ноября 2007 года Бхаскар Кармакар из Индии превзошел Литцова и без всяких шариков поставил новый рекорд, перечислив 5002 цифры числа e за один час 29 минут 52 секунды. В тот же день он точно назвал 5002 цифры числа e в обратном порядке. Это невероятное достижение, но каждому из нас вполне по силам запомнить десять цифр числа e , выучив следующую мнемоническую фразу: I’m forming a mnemonic to remember a function in analysis («Я создаю эту мнемоническую фразу запоминания функции в анализе»). Количество букв в каждом слове представляет собой соответствующую цифру числа e .

И последнее: сценаристы «Симпсонов» тоже в восторге от числа e . Оно не только присутствует на корешке одной из книг в эпизоде «ДеньгоБАРТ», но и особо отмечается в эпизоде «Сражение перед Рождеством» (The Fight Before Christmas, сезон 22, эпизод 8; 2010 год). Последний фрагмент эпизода сделан в стиле образовательной программы для детей «Улица Сезам», поэтому заканчивается традиционной спонсорской рекламой. Однако вместо фразы «Спонсоры сегодняшней программы “Улица Сезам” – буква c и число 9» зрителям озвучили фразу «Спонсоры сегодняшнего показа “Симпсонов” – символ умляут [46]и число e (не путать с буквой “е”). Это число, экспоненциальная функция которого – производная от него самого».

Глава 12

Еще один кусочек числа π

В эпизоде «Оковы Мардж» (Marge in Chains, сезон 4, эпизод 21; 1993 год) Мардж арестовывают после того, как она забывает заплатить за бутылку бурбона в магазине «На скорую руку». Мардж привлекают к суду, а ее интересы представляет адвокат Лайонел Хац, человек с сомнительной репутацией. Еще до начала суда Хац признает, что это, вероятно, будет трудная битва, потому что у него плохие отношения с судьей: «Он ненавидит меня с тех пор, как я вроде бы наехал на его собаку… Замените слово “вроде” на слово “неоднократно”, а слово “собака” на “сын”».

Стратегия защиты Мардж, которой решил придерживаться Хац, сводится к дискредитации владельца магазина «На скорую руку» Апу Нахасапимапетилона, который выступает в качестве свидетеля по обвинению Мардж в краже. Однако когда он вызывает Апу для дачи свидетельских показаний и спрашивает, забывал ли он когда-либо что-нибудь, Апу пытается показать, что у него идеальная память, и отвечает: «Нет, но я могу назвать число π до сорока тысяч десятичных знаков. Последняя цифра 1».

На Гомера это не производит особого впечатления, и он просто думает про себя: «Мм… Пи(рог)».

Поразительное заявление Апу о том, что он запомнил до сорока тысяч десятичных знаков числа π, имеет смысл только в случае, если математики уже рассчитали это число с такой точностью. Так какова же была ситуация с его вычислением в 1993 году, когда эпизод вышел на экраны?

В главе 2 мы видели, как математики, начиная с древних греков, использовали многогранники для определения все более точного значения числа π и получили в итоге результат с точностью до тридцать четвертого десятичного знака. В 1630 году австрийский астроном Кристоф Гринбергер рассчитал число π с помощью многогранников до тридцать восьмого десятичного знака. С научной точки зрения нет совершенно никакого смысла в определении следующих цифр, поскольку данного значения вполне достаточно для выполнения самых сложных астрономических расчетов с максимально высокой точностью. И это не преувеличение. Если бы астрономы установили точный диаметр известной нам части Вселенной, то значения числа π до тридцать восьмого десятичного знака вполне бы хватило для расчета окружности Вселенной с точностью до размера атома водорода.

Тем не менее борьба за установление все большего количества цифр числа π продолжилась. Эта задача стала напоминать восхождение на Эверест. Число π выступало на математическом ландшафте в роли далекой горной вершины, и математики стремились взобраться на нее. Однако стратегия математиков изменилась. Вместо использования медленного подхода с применением многогранников они открыли ряд формул для определения значения числа π более быстрым способом. Например, в XVIII столетии Леонард Эйлер вывел следующую элегантную формулу:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Симпсоны и их математические секреты отзывы


Отзывы читателей о книге Симпсоны и их математические секреты, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x