Яков Перельман - Живая математика. Математические рассказы и головоломки

Тут можно читать онлайн Яков Перельман - Живая математика. Математические рассказы и головоломки - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Мир энциклопедий Аванта +, Астрель, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Живая математика. Математические рассказы и головоломки
  • Автор:
  • Жанр:
  • Издательство:
    Мир энциклопедий Аванта +, Астрель
  • Год:
    2007
  • ISBN:
    ISBN 978-5-98986-123-1
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Яков Перельман - Живая математика. Математические рассказы и головоломки краткое содержание

Живая математика. Математические рассказы и головоломки - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Новую серию издательства "Мир энциклопедий Аванта+" открывает самая известная книга основоположника жанра "Занимательная наука" Якова Исидоровича Перельмана. В ней собраны увлекательные рассказы-задачи на математические темы, головоломки, а также авторские задачи замечательного ученого.

Живая математика. Математические рассказы и головоломки - читать онлайн бесплатно ознакомительный отрывок

Живая математика. Математические рассказы и головоломки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ясно, что если мы сделаем три таких замены, мы доведем общее число ног в коробке до требуемых 54. Но тогда из

8 жуков останется только 5, остальные будут пауки. Итак, в коробке было 5 жуков и 3 паука.

Проверим: у 5 жуков 30 ног, у 3 пауков 24 ноги, а всего 30 + 24 = 54, как и требует условие задачи.

Можно решить задачу и иначе. А именно: можно предположить, что в коробке были только пауки, 8 штук. Тогда всех ног оказалось бы 8 х 8 = 64, - на 10 больше, чем указано в условии. Заменив одного паука жуком, мы уменьшим число ног на 2. Нужно сделать 5 таких замен, чтобы свести число ног к требуемым 54. Иначе говоря, из 8 пауков надо оставить только 3, а остальных заменить жуками.

90. Если бы вместо плаща, шляпы и галош куплено было только две пары галош, то пришлось бы заплатить не 140 руб., а на столько меньше, на сколько галоши дешевле плаща со шляпой, т. е. - на 120 руб. Мы узнаем, следовательно, что две пары галош стоят 140-120 = 20 руб., отсюда стоимость одной пары - 10 руб.

Теперь стало известно, что плащ и шляпа вместе стоят 140 - 10 = 130 руб., причем плащ дороже шляпы на 90 руб. Рассуждаем, как прежде: вместо плаща со шляпой купим две шляпы. Мы заплатим не 130 руб., а меньше на 90 руб. Значит, две шляпы стоят 130 - 90 = 40 руб., откуда стоимость одной шляпы - 20 руб.

Итак, вот стоимость вещей: галоши - 10 руб., шляпа - 20 руб., плащ - 110 руб.

91. Продавец имел в виду корзину с 29 яйцами. Куриные яйца были в корзинах с обозначениями 23, 12 и 5; утиные - в корзинах с числами 14 и 6.

Проверим. Всего куриных яиц оставалось:

23 + 12 + 5 = 40.

Утиных

14 + 6 = 20.

Куриных - вдвое больше, чем утиных, как и требует условие задачи.

92. В этой задаче нечего объяснять: самолет совершает перелет в обоих направлениях в одинаковое время, потому что 80 мин = 1 ч 20 мин.

Задача рассчитана на невнимательного читателя, который может подумать, что между 1 ч 20 мин и 80 мин есть разница. Как ни странно, но людей, попадающихся на этот крючок, оказывается немало, притом среди привыкших делать расчеты их больше, чем среди малоопытных вычислителей.

Причина кроется в привычке к десятичной системе мер и денежных единиц. Видя обозначение «1 ч 20 мин» и рядом с ним - «80 мин», мы невольно оцениваем различие между ними как разницу между 1 руб. 20 коп. и 80 коп. На эту психологическую ошибку и рассчитана задача.

93. Разгадка недоумения в том, что один из отцов приходился другому сыном. Всех было не четверо, а трое: дед, сын и внук. Дед дал сыну 150 руб., а тот передал из них 100 руб. внуку (т. е. своему сыну), увеличив собственные капиталы, следовательно, всего на 50 руб.

94. Первую шашку можно поместить на любое из 64 полей доски, т. е. 64 способами. После того как первая поставлена, вторую шашку можно поместить на какое-либо из прочих 63 полей. Значит, к каждому из 64 положений первой шашки можно присоединить 63 положения второй шашки. Отсюда общее число различных положений двух шашек на доске

64 х 63 = 4032.

95. Наименьшее целое число, какое можно написать двумя цифрами, не 10, как думают, вероятно, иные читатели, а единица, выраженная таким образом:

Знакомые с алгеброй прибавят к этим выражениям еще ряд других обозначений 1 - фото 212

Знакомые с алгеброй прибавят к этим выражениям еще ряд других обозначений:

1°, 2°, 3°, 4° и т. д. до 9°,

потому что всякое число в нулевой степени равно единице [36] Но неправильны были бы решения °/ 0 или 0°: эти выражения необязательно равны единице. .

96. Надо представить единицу как сумму двух дробей:

Знающие алгебру могут дать еще и другие ответы 123456789 234567 981и т - фото 213

Знающие алгебру могут дать еще и другие ответы:

123456789°; 234567 9-8-1и т. п.,

так как число в нулевой степени равно единице.

97. Два способа таковы:

Кто знает алгебру тот может прибавить еще несколько решений например 99 - фото 214

Кто знает алгебру, тот может прибавить еще несколько решений, например:

99 Число 100 можно выразить пятью одинаковыми цифрами употребив в дело - фото 215 99 Число 100 можно выразить пятью одинаковыми цифрами употребив в дело - фото 216

99. Число 100 можно выразить пятью одинаковыми цифрами, употребив в дело единицы, тройки и - всего проще - пятерки:

100 На вопрос задачи часто отвечают 1111 Однако можно написать число во - фото 217

100. На вопрос задачи часто отвечают: 1111. Однако можно написать число во много раз большее - именно 11 в одиннадцатой степени: 11 11.

Если у вас есть терпение довести вычисление до конца (с помощью логарифмов можно выполнять такие расчеты гораздо скорее), вы убедитесь, что число это больше 280 миллиардов. Следовательно, оно превышает число 1111 в 250 миллионов раз.

101. Заданный пример деления может соответствовать четырем различным случаям, а именно:

1 337 174: 943 = 1418,

1 343 784: 949 = 1416,

1 200 474:846 = 1419,

1 202 464:848 = 1418.

102. Этот пример отвечает только одному [37] Позже обнаружены еще три решения. случаю деления:

7 375 428 413:125 473 = 58 781.

Обе последние, весьма нелегкие задачи были впервые опубликованы в американских изданиях: «Математическая газета», 1920 г. и «Школьный мир», 1906 г.

103. В квадратном метре тысяча тысяч квадратных миллиметров. Каждая тысяча приложенных друг к другу миллиметровых квадратиков составляет 1 м; тысяча тысяч их составляет 1000 м, т. е. 1 км: полоска вытянется на целый километр.

104. Ответ поражает неожиданностью: столб возвышался бы на… 1000 км.

Сделаем устный расчет.

В кубометре содержится кубических миллиметров тысяча х тысячу х тысячу. Каждая тысяча миллиметровых кубиков, поставленных один на другой, дадут столб в 1000 м = 1 км. А так как у нас кубиков еще в тысячу раз больше, то и составится 1000 км.

105. Из рис. 136видно, что (вследствие равенства углов 1 и 2) линейные размеры предмета так относятся к соответствующим размерам изображения, как расстояние предмета от объекта относится к глубине камеры. В нашем случае, обозначив высоту аэроплана над землей в метрах через х, имеем пропорцию:

12000: 8 = х: 0,12,

откуда х = 180 м.

Рис 136 Расчет высоты аэроплана Рис 137 Рис 138 Рис 13 - фото 218

Рис. 136. Расчет высоты аэроплана

Рис 137 Рис 138 Рис 139 106 Расчеты подобного рода выполняются в уме так - фото 219

Рис. 137

Рис 138 Рис 139 106 Расчеты подобного рода выполняются в уме так Надо - фото 220

Рис. 138

Рис 139 106 Расчеты подобного рода выполняются в уме так Надо умножить 894 - фото 221

Рис. 139

106. Расчеты подобного рода выполняются в уме так. Надо умножить 89,4 г на миллион, т. е. на тысячу тысяч. Умножаем в два приема:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Живая математика. Математические рассказы и головоломки отзывы


Отзывы читателей о книге Живая математика. Математические рассказы и головоломки, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x