Яков Перельман - Живая математика. Математические рассказы и головоломки

Тут можно читать онлайн Яков Перельман - Живая математика. Математические рассказы и головоломки - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Мир энциклопедий Аванта +, Астрель, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Живая математика. Математические рассказы и головоломки
  • Автор:
  • Жанр:
  • Издательство:
    Мир энциклопедий Аванта +, Астрель
  • Год:
    2007
  • ISBN:
    ISBN 978-5-98986-123-1
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Яков Перельман - Живая математика. Математические рассказы и головоломки краткое содержание

Живая математика. Математические рассказы и головоломки - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Новую серию издательства "Мир энциклопедий Аванта+" открывает самая известная книга основоположника жанра "Занимательная наука" Якова Исидоровича Перельмана. В ней собраны увлекательные рассказы-задачи на математические темы, головоломки, а также авторские задачи замечательного ученого.

Живая математика. Математические рассказы и головоломки - читать онлайн бесплатно ознакомительный отрывок

Живая математика. Математические рассказы и головоломки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Яков Перельман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

89,4 х 1000 = 89,4 кг,

потому что килограмм в тысячу раз больше грамма. Далее:

89,4 кг х 1000 = 89,4 т,

потому что тонна в тысячу раз больше килограмма. Итак, искомый вес - 89,4 т.

107. Всех путей по просекам от Адо Вможно насчитать 70. (Систематическое решение этой задачи возможно с помощью так называемого Паскалева треугольника, рассматриваемого в курсах алгебры.)

108. Так как сумма всех чисел, обозначенная на циферблате, равна 78, то числа каждого из шести участков должны составлять вместе 78: 6, т. е. 13. Это облегчает отыскание решения, которое показано на рис. 137.

109-110. Решения показаны на прилагаемых рис. 138и 139.

Рис 140 111 Трехногий стол всегда может касаться пола концами своих трех - фото 222

Рис. 140

111. Трехногий стол всегда может касаться пола концами своих трех ножек, потому что через каждые три точки пространства может проходить плоскость, и притом только одна. В этом причина того, что трехногий стол не качается; как видите, она чисто геометрическая, а не физическая. Вот почему так удобно пользоваться треногами для землемерных инструментов и фотографических аппаратов. Четвертая нога не сделала бы подставку устойчивее; напротив, пришлось бы тогда всякий раз заботиться о том, чтобы подставка не качалась.

112. На вопрос задачи легко ответить, если сообразить, какое время показывают стрелки. Стрелки на левых часах (рис. 140)показывают, очевидно, 7 час. Значит, между концами этих стрелок заключена дуга в 5/ 12полной окружности.

В градусной мере это составляет

Стрелки на правых часах показывают как нетрудно сообразить 9 ч 30 мин Дуга - фото 223

Стрелки на правых часах показывают, как нетрудно сообразить, 9 ч 30 мин. Дуга между их концами содержит 3 % двенадцатых доли полной окружности, или 7/ 24.

В градусной мере это составляет

113 Принимая рост человека в 175 см и обозначив радиус Земли через R имеем 2 - фото 224

113. Принимая рост человека в 175 см и обозначив радиус Земли через R, имеем:

2 х 3,14 х (R + 175) - 2 х 3,14 х R = 2 х 3,14 х 175 = 1099 см,

т. е. около 11 м.

Рис 141 Поразительно здесь то что результат совершенно не зависит от радиуса - фото 225

Рис. 141

Поразительно здесь то, что результат совершенно не зависит от радиуса шара и, следовательно, одинаков на исполинском Солнце и маленьком шарике.

114. Требование задачи легко удовлетворить, если расставить людей в форме шестиугольника, как показано на рис. 141.

115. На рис. 142указаны следы сабельных ударов, а на рис. 143видно, как надо расположить образовавшиеся 4 куска, чтобы составить второй, более характерный символ фашистской диктатуры: квадрат концентрационного лагеря.

Рис 142 Рис 143 Рис 144 Рис 145 - фото 226

Рис. 142

Рис 143 Рис 144 Рис 145 Рис 146 116 Читатели слыхавш - фото 227

Рис. 143

Рис 144 Рис 145 Рис 146 116 Читатели слыхавшие о неразрешимости задачи - фото 228

Рис. 144

Рис 145 Рис 146 116 Читатели слыхавшие о неразрешимости задачи квадратуры - фото 229

Рис. 145

Рис 146 116 Читатели слыхавшие о неразрешимости задачи квадратуры круга - фото 230

Рис. 146

116. Читатели, слыхавшие о неразрешимости задачи квадратуры круга, сочтут, вероятно, и предлагаемую задачу неразрешимой строго геометрически. Раз нельзя превратить в равновеликий квадрат полный круг, то, думают многие, нельзя превратить в прямоугольную фигуру и луночку, составленную двумя дугами окружности. Между тем задача, безусловно, может быть решена геометрическим построением, если воспользоваться одним любопытным следствием общеизвестной Пифагоровой теоремы.

Следствие, которое я имею в виду, гласит, что сумма площадей полукругов, построенных на катетах, равна полукругу, построенному на гипотенузе (рис. 144).Перекинув большой полукруг на другую сторону (рис. 145).видим, что обе заштрихованные луночки вместе равновелики треугольнику [38] Положение это известно в геометрии под названием «теоремы о Гиппократовых луночках». .

Если треугольник взять равнобедренный, то каждая луночка в отдельности будет равновелика половине этого треугольника (рис. 146).

Рис 147 Рис 148 Превращение квадрата в крест Отсюда следует что можно - фото 231

Рис. 147

Рис 148 Превращение квадрата в крест Отсюда следует что можно геометрически - фото 232

Рис. 148. Превращение квадрата в крест

Отсюда следует, что можно геометрически точно построить равнобедренный прямоугольный треугольник, площадь которого равна площади серпа. А так как равнобедренный прямоугольный треугольник легко превращается в равновеликий квадрат (рис. 147)»то и серп наш возможно чисто геометрическим построением заменить равновеликим квадратом.

Остается только превратить этот квадрат в равновеликую фигуру Красного Креста (составленную, как известно, из 5 примкнутых друг к другу равных квадратов). Существует несколько способов выполнения такого построения; два из них показаны на рис. 148и 149.

Оба построения начинают с того, что соединяют вершины квадрата с серединами противоположных сторон. Важное замечание: превратить в равновеликий крест можно только такую фигуру серпа, которая составлена из двух дуг окружностей: наружного полукруга и внутренней четверти окружности соответственно большего радиуса [39] Тот лунный серп, который мы видим на небе, имеет несколько иную форму: его наружная дуга – полуокружность, внутренняя же – полуэллипс. Художники часто изображают лунный серп неверно, составляя его из дуг окружностей. .

Рис 149 Другой способ превращения квадрата в крест Рис 150 Итак вот ход - фото 233

Рис. 149. Другой способ превращения квадрата в крест

Рис 150 Итак вот ход построения креста равновеликого серпу Концы Аи Всерпа - фото 234

Рис. 150

Итак, вот ход построения креста, равновеликого серпу. Концы Аи Всерпа (рис. 150)соединяют прямой: в середине О этой прямой восставляют перпендикуляр и откладывают ОС=ОА.Равнобедренный треугольник ОАСдополняют до квадрата ОАDС,который превращают в крест одним из способов, указанных на рис. 148и 149.

117. Приводим окончание прерванного рассказа Бенедиктова:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Живая математика. Математические рассказы и головоломки отзывы


Отзывы читателей о книге Живая математика. Математические рассказы и головоломки, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x