Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Быть может, проблемы Analysis Situs не были бы даже поставлены, если бы пользовались только языком анализа; впрочем, нет, я ошибаюсь: они были бы, несомненно, поставлены, ибо их разрешение необходимо для множества вопросов анализа, но наверное изолированно, так что нельзя было бы вовсе усмотреть их общей связи. Особенно содействовало недавнему успеху геометрии введение понятия о преобразованиях и группах. Благодаря этому понятию геометрия перестала быть агрегатом теорем, более или менее интересных, но следующих одна за другой без всякого сходства между ними, она приобрела единство. А с другой стороны, история не должна забывать того, что именно по поводу геометрии начали систематически исследовать непрерывные преобразования, так что чистые геометры со своей стороны также содействовали развитию идеи группы, идеи, столь полезной в других отраслях математики.
Выше я говорил о представляющейся нам необходимости постоянно восходить к основным принципам нашей науки и о той пользе, которую отсюда может извлечь наука о человеческом духе. Эта потребность породила два стремления, занявшие весьма обширное место на самых последних страницах истории математики. Первое из них – канторизм, заслуги которого перед наукой известны. Одна из характерных черт канторизма состоит в том, что вместо того, чтобы подниматься к общему, строя все более и более сложные конструкции, и вводить определения через построения, он исходит из genus supremum и дает определения только per genus proximum et differentiam specificam, как сказали бы схоластики. Этим объясняется тот ужас, который он некоторое время тому назад вызвал в иных умах, например у Эрмита, излюбленной идеей которого является сравнение математических наук с естественными. У большинства из нас эти предубеждения уже рассеялись, но случилось так, что натолкнулись на некоторые парадоксы, которые привели бы в восторг Зенона Элейского и мегарскую школу. И тогда все пустились в поиски за противоядием. Я держусь того мнения – и не я один, – что важно вводить в рассмотрение исключительно такие вещи, которые можно вполне определить при помощи конечного количества слов. Но какое бы противоядие ни было признано действительным, мы можем предвкушать наслаждение врача, имеющего возможность наблюдать интересный патологический случай.
С другой стороны, мы видим попытки перечислить те более или менее скрытые аксиомы и постулаты, которые служат основанием для различных математических теорий. Самые блестящие результаты получил Гильберт. На первый взгляд эта область кажется довольно ограниченной; кажется, что когда перечень будет закончен – а это не замедлит произойти, – нечего будет больше делать. Но когда все будет перечислено, тогда найдется множество приемов для классификации всего материала; хороший библиотекарь всегда находит себе занятие, а каждая новая классификация будет поучительна для философа.
Этим я кончаю мой обзор, которого я не мог и рассчитывать сделать полным по множеству причин, и прежде всего потому, что я и без того уже слишком злоупотребил вашим вниманием. Думаю, что приведенных примеров будет достаточно, для того чтобы показать вам, в чем состоял механизм прогресса математических наук в прошлом и в каком направлении они должны будут двигаться в будущем.
Глава III. Математическое творчество
Вопрос о процессе математического творчества должен возбуждать в психологе самый живой интерес. В этом акте человеческий ум, по-видимому, заимствует из внешнего мира меньше всего; как орудием, так и объектом воздействия здесь является только он сам, так по крайней мере кажется; поэтому, изучая процесс математической мысли, мы вправе рассчитывать на проникновение в самую сущность человеческого ума.
Это было понято давно; и вот несколько месяцев тому назад журнал «Математическое образование», редактируемый профессорами Лезаном и Фером, предпринял анкету по вопросу о привычках ума и приемах работы различных математиков. Но мое сообщение в главных чертах было уже готово, когда были опубликованы результаты этой анкеты, так что я совершенно не мог ими воспользоваться. Скажу только, что большинство свидетельств подтверждало мои заключения, я не говорю – все, так как нельзя рассчитывать на единогласие ответов, когда вопрос ставится на всеобщее голосование.
Начнем с одного факта, который должен нас изумлять или, вернее, должен был бы изумлять, если бы мы к нему не привыкли. Чем объяснить то обстоятельство, что некоторые люди не понимают математических рассуждений? Если эти рассуждения основаны на одних лишь правилах логики, правилах, признаваемых всеми нормальными умами, если и очевидность основывается на принципах, которые общи всем людям и которых никто в здравом уме не станет отрицать, то как возможно существований столь многих людей, совершенно к ним неспособных?
Что не всякий способен на творчество, в этом нет ничего удивительного. Что не всякий может запомнить доказательство, однажды им узнанное, с этим также можно примириться. Но что не всякий может понимать математическое рассуждение в тот момент, когда ему его излагают, вот что кажется в высшей степени поразительным, когда начинаешь в это вдумываться. А между тем тех, которые лишь с трудом могут следить за таким рассуждением, большинство; это неоспоримый факт, и опыт учителей средней школы наверное ему не противоречит.
Но мало того: как возможна ошибка в математическом рассуждении? Здравый ум не должен допускать логических ошибок, а между тем иные острые умы, безошибочные в тех кратких рассуждениях, которые приходится делать при обычных повседневных обстоятельствах, оказываются неспособными следить или повторить без ошибок математические доказательства, которые, хотя и более длинны, но, в сущности, представляют собой лишь нагромождение маленьких рассуждений, совершенно подобных тем, что даются им так легко. Нужно ли добавлять, что и хорошие математики далеко не непогрешимы?
Ответ представляется мне очевидным. Представив себе длинную цепь силлогизмов, в которой заключения предыдущих силлогизмов служат посылками для последующих, мы способны понять каждый силлогизм в отдельности, и при переходе от посылок к заключению мы не рискуем впасть в ошибку. Но между моментом, когда мы в первый раз встретили какое-нибудь предложение в виде заключения некоторого силлогизма, и тем моментом, когда мы вновь с ним встречаемся как с посылкой другого силлогизма, иногда проходит много времени, в течение которого были развернуты многочисленные звенья цепи; и вот может случиться, что за это время мы либо вовсе забыли это предложение, либо, что еще хуже, забыли его смысл. Таким образом, возможно, что мы его заменим другим, несколько отличным от него предложением или, сохраняя его словесное выражение, припишем ему несколько иной смысл; в том и в другом случае мы рискуем ошибиться.
Читать дальшеИнтервал:
Закладка: