Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Часто математику приходится пользоваться много раз одним и тем же правилом: в первый раз он, конечно, доказывает себе его справедливость; пока это доказательство остается в его памяти вполне ясным и свежим, пока он совершенно точно представляет себе смысл и широту охвата этого правила, до тех пор нет никакого риска в его употреблении. Но когда в дальнейшем наш математик, полагаясь на свою память, продолжает применять правило уже совершенно механически, тогда какой-нибудь изъян в памяти может привести к ложному применению правила. Так, если взять простой, почти избитый пример, мы иногда делаем ошибки в счете по той причине, что забыли нашу таблицу умножения.
С этой точки зрения специальная способность в математике должна обусловливаться очень верной памятью или скорее необычайной напряженностью внимания. Это качество можно было бы сравнить со способностью игрока в вист запоминать вышедшие карты, или, чтобы взять более сильную степень, со способностью шахматиста обозревать и предвидеть очень большое число комбинаций и удерживать их в памяти. С этой точки зрения всякий хороший математик должен был бы быть в то же время хорошим шахматистом, и наоборот; равным образом он должен быть силен в числовых выкладках. Конечно, иногда так и бывает; так, Гаусс одновременно был гениальным геометром и очень искусным и уверенным вычислителем.
Но бывают исключения; впрочем, я ошибаюсь, говоря «исключения», ибо тогда исключения окажутся многочисленнее случаев, подходящих под правило. Напротив, именно Гаусс и представляет собой исключение. Что же касается, например, меня лично, то я должен сознаться, что неспособен сделать без ошибки сложение. Равным образом из меня вышел бы плохой шахматист; я, быть может, хорошо рассчитал бы, что, играя таким-то образом, я подвергаюсь такой-то опасности; я бы разобрал много других ходов, которые отверг бы по тем или другим причинам; но в конце концов я, наверное, сделал бы ход, уже рассмотренный, забыв тем временем о той опасности, которую я раньше предусмотрел.
Одним словом, память у меня неплохая, но она была бы недостаточна для того, чтобы я мог стать хорошим игроком в шахматы.
Почему же она не изменяет мне в трудном математическом рассуждении, в котором растерялось бы большинство шахматистов? Очевидно, по той причине, что здесь моей памятью руководит общий ход рассуждения. Математическое доказательство представляет собой не просто какое-то нагромождение силлогизмов: это силлогизмы, расположенные в известном порядке, причем этот порядок расположения элементов оказывается гораздо более важным, чем сами элементы. Если я обладаю чувством, так сказать, интуицией этого порядка, так что могу обозреть одним взглядом все рассуждения в целом, то мне не приходится опасаться, что я забуду какой-нибудь один из элементов; каждый из них сам по себе займет назначенное ему место без всякого усилия памяти с моей стороны.
Далее, когда я повторяю усвоенное доказательство, мне часто кажется, что я мог бы и сам придумать его; быть может, часто это только иллюзия; но если даже у меня недостаточно сил, чтобы самостоятельно найти такое доказательство, то я по меньшей мере самостоятельно создаю его всякий раз, когда мне приходится его повторять.
Понятно, что это чувство, этот род математической интуиции, благодаря которой мы отгадываем скрытые гармонии и соотношения, не может быть принадлежностью всех людей. Одни не обладают ни этим тонким, трудно оценимым чувством, ни силой памяти и внимания выше среднего уровня, и тогда они оказываются совершенно неспособными понять сколько-нибудь сложные математические теории.
Другие, обладая этим чувством лишь в слабой степени, одарены в то же время редкой памятью и большой способностью внимания. Они запомнят наизусть частности, одну за другой; они смогут понять математическую теорию и даже иной раз сумеют ее применить, но они не в состоянии творить. Наконец, третьи, обладая в более или менее высокой степени той специальной интуицией, о которой я только что говорил, не только смогут понять математику, не обладая особенной памятью, но они смогут оказаться творцами, и их поиски новых открытий будут более или менее успешны, смотря по степени развития у них этой интуиции.
В чем, в самом деле, состоит математическое творчество? Оно заключается не в создании новых комбинаций с помощью уже известных математических объектов. Это может сделать мало ли кто; но число комбинаций, которые можно найти этим путем, было бы бесконечно, и даже самое большое их число не представляло бы ровно никакого интереса. Творчество состоит как раз в том, чтобы не создавать бесполезных комбинаций, а строить такие, которые оказываются полезными; а их ничтожное меньшинство. Творить – это отличать, выбирать.
Как следует производить этот выбор, я объяснил в другом месте; в математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию какого-нибудь математического закона, совершенно подобно тому, как экспериментальные факты приводят к открытию физического закона. Это именно те факты, которые обнаруживают родство между другими фактами, известными с давних пор, но ошибочно считавшимися чуждыми друг другу.
Среди комбинаций, на которые падает выбор, часто наиболее плодотворными оказываются те, элементы которых взяты из наиболее удаленных друг от друга областей. Я не хочу сказать, что для нового открытия достаточно сблизить возможно глубже различающиеся предметы; большинство комбинаций, построенных таким образом, оказались бы совершенно бесплодными; но некоторые, правда, очень немногие из них, бывают наиболее плодотворными.
Творить, изобретать, сказал я, значит выбирать; но это слово, пожалуй, не вполне подходит. Оно вызывает представление о покупателе, которому предлагают громадное число образчиков и который их пересматривает один за другим, имея в виду сделать свой выбор. Здесь число образчиков было бы так велико, что всей жизни не хватило бы для пересмотра всех их. Но в действительности это обстоит иначе. Бесплодные комбинации даже и не представляются уму изобретателя. В поле его сознания появляются лишь действительно полезные комбинации, да еще некоторые другие, которые он, правда, отбросит в сторону, но которые не лишены характера полезных комбинаций. Все происходит подобно тому, как если бы изобретатель был экзаменатором второй ступени, имеющим дело лишь с кандидатами, успешно прошедшими через первое испытание.
К тому, что мною сказано до сих пор, можно прийти посредством наблюдения или вывода при чтении произведений математиков, если только вдумчиво это делать.
Читать дальшеИнтервал:
Закладка: