Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пространство, которое я рассматривал в предыдущем разделе и которое я мог бы назвать ограниченным пространством, было отнесено к осям координат, связанным с моим телом; эти оси были постоянны, так как мое тело не двигалось, а перемещались лишь мои члены. Каковы же оси, к которым может быть отнесено расширенное пространство, т. е. то пространство, которое я только что определил? Мы определяем точку при помощи ряда движений, которые необходимо совершать для ее достижения, исходя при этом из определенного начального положения тела. Оси, следовательно, связаны с этим начальным положением.

Но положение, которое я называю начальным, может быть произвольно избрано среди всех тех положений, которые мое тело последовательно занимало; если более или менее бессознательное воспоминание об этих последовательных положениях необходимо для генезиса понятия пространства, то это воспоминание может простираться более или менее далеко в прошлое. Отсюда получается известная неопределенность в самом определении пространства, и этой именно неопределенностью обусловливается его относительность.

Итак, нет абсолютного пространства, а есть только пространство, отнесенное к известному начальному положению тела. Для сознательного существа, которое, как низшие животные, было бы прикреплено к почве и которому, следовательно, было бы знакомо лишь ограниченное пространство, это пространство также было бы относительным, так как оно было бы отнесено к его телу; но такое существо не сознавало бы этой относительности, потому что оси, к которым оно относило ограниченное пространство, не изменялись бы! Конечно, скала, к которой это существо было бы приковано, не оставалась бы неподвижной, так как она увлекалась бы движением нашей планеты; для нас, следовательно, эти оси изменялись бы в каждое мгновение; но для него они оставались бы неизменными. Мы обладаем способностью относить наше расширенное пространство то к положению А нашего тела, рассматриваемому как начальное, то к положению В , которое наше тело приобрело несколькими мгновениями позже и которое совершенно свободно можем также рассматривать как начальное; мы, следовательно, каждое мгновение производим бессознательное изменение координат. Этой способности не было бы у нашего воображаемого существа; лишенное возможности путешествовать, оно почитало бы пространство абсолютным. В каждое мгновение его система в действительности изменялась бы, но для него она оставалась бы одной и той же, так как она была бы единственной его системой. Не то для нас, обладающих в каждое мгновение несколькими системами, между которыми мы можем произвольно выбирать, и сохраняющих воспоминания, которые могут нас переносить в более или менее далекое прошлое.

Но это не все. Ограниченное пространство не было бы однородным; различные точки этого пространства не могли бы рассматриваться как эквивалентные, потому что для достижения одних потребовались бы величайшие усилия, для достижения других – незначительные. Напротив, наше беспредельное пространство кажется нам однородным, и мы говорим, что все его точки эквивалентны. Что же это, собственно, значит?

Если мы исходим из известного положения A , то мы можем совершить известные движения M , характеризуемые известным комплексом мускульных ощущений. Но, исходя из другого положения В , мы сможем совершить движения М’ , характеризуемые теми же мускульными ощущениями. Обозначим буквой а положение определенной точки тела, например конца указательного пальца правой руки при начальном положении A , и обозначим буквой В положение того же пальца после того, как, исходя из этого положения A , мы совершили движения М . Пусть а’ будет положение того же пальца в В , а b’ – положение того же пальца после совершения движений М’ .

Так вот, при таких условиях я обыкновенно говорю, что точки пространства а и b относятся друг к другу как точки а’ и b’ , а это обозначает только, что два ряда движений М и М’ сопровождаются одними и теми же мускульными ощущениями. И так как я сознаю, что при переходе из положения A в В мое тело сохранило способность к одним и тем же движениям, то я знаю, что есть точка пространства, которая по отношению к точке а’ составляет то же, что произвольно выбранная точка В относительно точки а , и что, таким образом, обе точки а и а’ эквивалентны. И вот поэтому пространство в то же время относительно, ибо его свойства остаются одними и теми же, когда оно отнесено к осям A или к осям В . Таким образом, относительность пространства и его однородность – это одно и то же.

Теперь, если я захочу перейти к огромному пространству, которое служит уже не только для меня, но в котором я могу себе представить всю Вселенную, я прибегну к акту воображения. Я представлю себе, что испытал бы великан, который несколькими шагами достиг бы планет или, если это угодно, что испытал бы я сам перед лицом миниатюрного мира, в котором планеты были бы заменены маленькими шариками, и на одном из них суетился бы лилипут, и этим лилипутом был бы я. Но вот акт воображения был бы для меня невозможен, если бы я не построил предварительно и притом для собственного обихода своего ограниченного и своего обширного пространства.

IV

Теперь возникает вопрос; почему все эти пространства имеют три измерения? Обратимся к «распределительному щиту», о котором мы говорили выше. Мы имеем, с одной стороны, список возможных опасностей: обозначим их А 1, А 2и т. д.; с другой стороны – список разных средств защиты, которые мы обозначим В 1, В 2и т. д. Мы имеем, таким образом, связи между элементами первого и второго списков, так что, когда, например, сработает сигнализатор опасности А 3, он приведет или может привести в действие реле, соответствующее ответному удару В 3.

Так как я говорил выше о центростремительных и центробежных проволоках, то я опасаюсь, как бы во всем этом не усмотрели не простое сравнение, а описание нервной системы. Но моя мысль не такова. Прежде всего я не позволил бы себе высказать мнение относительно структуры нервной системы, которой я не знаю, между тем как лица, изучавшие ее, высказываются о ней с большой осторожностью. Затем, несмотря на мою некомпетентность, я чувствую, что эта схема была бы слишком упрощенной, и, наконец, в моем списке ответных ударов имеются некоторые очень сложные; как мы выше видели, когда речь шла об обширном пространстве, некоторые ответные удары могут включать в себя ряд движений ног, сопровождающихся движением руки. Дело, следовательно, идет не о физической связи между двумя реальными проводниками, но о психологической связи между двумя рядами ощущений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x