Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но я хочу лишь показать, что при деформации, о которой идет речь, мир не остался себе подобным: квадраты обратились в прямоугольники или в параллелограммы, круги – в эллипсы, сферы – в эллипсоиды. И однако мы ни в каком случае не можем знать, реальна ли эта деформация.
Очевидно, что в этом направлении можно было бы пойти гораздо дальше: вместо деформации Лоренца – Фицджеральда, законы которой чрезвычайно просты, мы могли бы вообразить какую-нибудь совершенно произвольную деформацию. Тела могли бы изменяться по законам сколь угодно сложным, и мы бы этого не заметили, если бы все тела без исключения подчинялись тем же законам. Говоря «все тела», я разумею, конечно, в том числе и наше тело и световые лучи, исходящие от разных предметов. Если бы мы рассматривали мир в одном из тех зеркал сложной формы, которые самым причудливым образом изменяют предметы, то взаимные отношения различных частей мира от этого не изменялись бы; если, в самом деле, два реальных предмета касаются друг друга, то их изображения также будут касаться друг друга. Собственно говоря, когда мы смотрим в такое зеркало, мы замечаем происшедшую деформацию, но это потому, что реальный мир существует рядом с его измененным образом, и если бы даже этот реальный мир был от нас скрыт, то все же осталось бы нечто, что от нас не было бы скрыто: это мы сами; мы не можем не видеть или по крайней мере не чувствовать нашего тела и наших членов, которые не испытали деформации и продолжают служить нам орудием измерения. Но если бы мы вообразили, что наше тело изменилось и притом стало таким, каким оно показалось бы в зеркале, то у нас исчезло бы орудие измерения, и деформация не могла бы быть обнаружена.
Вот два мира, из которых каждый является изображением другого; всякому предмету Р мира А соответствует в мире В предмет Р’ , который и есть его изображение; координаты изображения являются определенными функциями координат предмета Р ; эти функции могут, конечно, быть какими угодно; я предполагаю только, что они выбраны раз и навсегда. Между положением Р и положением Р’ существует постоянное соотношение; не важно, каково это соотношение; достаточно, что оно постоянное.
При таких условиях эти два мира не будут отличимы друг от друга. Я хочу сказать, что первый будет для своих обитателей тем же, чем является второй мир для своих.
И так будет до тех пор, пока два мира останутся обособленными друг от друга. Допустим, что мы обитаем в мире А , что мы построили нашу науку и, в частности, нашу геометрию. В это же время обитатели мира В также построят науку и, так как их мир есть образ нашего мира, то их геометрия будет также образом нашей геометрии, или, лучше сказать, она будет такой же, как и наша. Но если в один прекрасный день перед нами откроется окно в мир В , нас охватит чувство жалости: «несчастные, – скажем мы, – они думают, что построили геометрию, но то, что они называют этим именем, есть не что иное, как смешной и странный образ нашей геометрии, их прямые искривлены, их круги искажены буграми, их сферы усажены капризными неровностями». И мы не сомневаемся в том, что они скажут то же самое о нас, и никогда нельзя будет сказать, кто прав.
Ясно, таким образом, в каком широком смысле нужно понимать относительность пространства. В действительности пространство аморфно, и форму ему сообщают те вещи, которые в нем находятся. Что же можно сказать о той непосредственной интуиции, которую мы как будто имеем о прямой линии и о расстоянии? Мы столь мало обладаем интуицией расстояния самого по себе, что, как мы уже сказали, в течение ночи расстояние может увеличиваться в тысячу раз незаметно для нас, если только все другие расстояния испытывают то же самое изменение. И в течение ночи же мир В может стать на место мира A , причем мы этого решительно не будем знать; вместе с тем прямые линии перестанут быть прямыми и мы этого совершенно не заметим.
Одна часть пространства сама по себе и в абсолютном смысле слова не равна другой части пространства; ибо если она равна для нас, она не равна для обитателей мира В ; а эти последние могут иметь такое же точно право отвергнуть наше воззрение, какое имеем мы для того, чтобы отвергнуть их воззрение.
Я указал в другом сочинении, какие последствия вытекают из этих фактов для того представления, которое мы должны себе составить о неевклидовой геометрии и о других аналогичных геометриях; я не буду к ним возвращаться. Теперь же я стану на несколько иную точку зрения.
Если эта интуиция расстояния, направления, прямой линии, словом, если эта непосредственная интуиция пространства не существует, то почему нам кажется, что мы ее имеем? Если здесь только иллюзия, то почему эта иллюзия держится так прочно? Этот вопрос требует исследования. Непосредственной интуиции величины, сказали мы, не существует, и мы в состоянии только определить отношение этой величины к нашим измерительным инструментам. Мы не были бы способны построить пространство, если бы мы не имели инструмента для его измерения. А инструмент, к которому мы всё относим, которым мы инстинктивно пользуемся, – это наше собственное тело. По отношению к нашему телу мы располагаем внешние предметы, и единственные пространственные отношения этих предметов, какие мы можем себе представить, суть их отношения с нашим телом. Наше тело служит, так сказать, системой осей координат.
Например, в один момент α присутствие предмета А обнаруживается мною органом зрения. В другой момент β присутствие другого предмета В обнаруживается мною при помощи другого органа чувств, например слуха или осязания. Я заключаю, что предмет В занимает то же место, что и предмет А . Что же это значит? Прежде всего, это не значит, что оба предмета занимают в два различных момента одну и ту же точку в абсолютном пространстве; такое пространство, если бы и существовало, ускользало бы от нашего сознания, ибо между моментами α и β Солнечная система переместилась, а мы этого перемещения не знаем. Это значит только, что оба предмета занимают одно и то же положение по отношению к нашему телу.
Но какое же содержание имеет это утверждение? Впечатления, которые мы получили от этих предметов, шли по совершенно различным путям: по зрительному нерву для предмета А , по слуховому нерву для предмета В . С точки зрения качественной эти впечатления не имеют ничего общего. Представления, которые мы можем себе составить об этих двух предметах, являются абсолютно разнородными, друг к другу не сводимыми. Но я знаю только, что мне стоит известным образом протянуть правую руку, и я ухвачу тело А ; если даже я воздерживаюсь от соответствующего движения, то я представляю себе мускульные ощущения и другие аналогичные ощущения, которыми сопровождается это движение. Такое представление и ассоциируется с представлением предмета А .
Читать дальшеИнтервал:
Закладка: