Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Спешу прибавить, что определение, которое Кутюра дает числу 1, более удовлетворительно.
«Один, – говорит он, – в сущности, есть число элементов класса, два любых элемента коего тождественны».
Это определение более удовлетворительно, как я сказал, в том смысле, что для определения понятия 1 автор не пользуется словом «один». Но зато он пользуется словом «два». И я боюсь, что если спросить у Кутюра, что такое «два», то он должен будет в ответе воспользоваться словом «один».
Вернемся к мемуару Бурали-Форти. Я сказал, что его заключения прямо противоположны выводам Кантора. Но однажды меня посетил Адамар. Разговор коснулся этой антиномии.
– Не кажется ли вам, – сказал я, – что рассуждение Бурали-Форти безупречно?
– Нет, напротив, я не вижу в нем никаких возражений Кантору. Кроме того, Бурали-Форти не имел права говорить о совокупности всех порядковых чисел.
– Простите, он имел это право, потому что всегда мог написать:

– Я хотел бы знать, кто бы мог ему в этом воспрепятствовать, и можно ли сказать, что предмет не существует, если его назвали Q?
Мои старания были тщетны, убедить Адамара я не мог (противоположное было бы, впрочем, очень прискорбно, так как он был прав). Потому ли это было, что я не говорил достаточно красноречиво на языке Пеано? Возможно; но, между нами говоря, я этого не думаю.
Таким образом, несмотря на весь этот пасиграфический аппарат, вопрос не был разрешен. Что это доказывает? Когда вопрос идет только о том, чтобы доказать, что один есть число, пасиграфия достаточна; но если представляется затруднение, если возникает антиномия, требующая разрешения, то пасиграфия становится бессильной.
Глава IV. Новые логики
Чтобы оправдать свои притязания, логика должна была преобразоваться. Народились новые логики, среди которых наиболее интересной является логика Рассела. Казалось бы, что в области формальной логики ничего нового нельзя сказать и что Аристотель давно узрел ее основы. Но поле действия, которое Рассел отводит логике, бесконечно шире, чем поле классической логики, и Рассел сумел высказать в этом отношении оригинальные и часто правильные взгляды.
Между тем как логика Аристотеля была преимущественно логикой классов и за исходную точку брала отношение субъекта к предикату, Рассел прежде всего подчиняет логику классов логике предложений. Классический силлогизм «Сократ – человек и т. д.» уступает место гипотетическому силлогизму: если А истинно, то В истинно, но если В истинно, то С истинно и т. д.; и эта идея, на мой взгляд, одна из наиболее счастливых, ибо классический силлогизм легко свести к гипотетическому, тогда как обратное превращение представляет затруднение.
Но это не все: логика предложений Рассела есть этюд о законах, по которым комбинируются союзы «если», «и», «или» и отрицание «не». Это значительное расширение старой логики. Свойства классического силлогизма без труда распространяются на гипотетический силлогизм, и в формах последнего легко узнаются схоластические формы. Мы находим здесь то, что является существенным в классической логике. Но теория силлогизма есть еще не что иное, как синтаксис союза «если» и, быть может, отрицания.
Присоединяя два других союза – «и» и «или», – Рассел открывает логике новую область. Знаки «и», «или» подчиняются тем же законам, что и знаки × и +, т. е. переместительному, сочетательному и распределительному законам. Таким образом, «и» представляет логическое умножение, тогда как «или» представляет логическое сложение. Это также весьма интересно.
Рассел приходит к выводу, что какое-нибудь ложное предложение заключает в себе и все прочие истинные или ложные предложения. Кутюра говорит, что этот вывод покажется на первый взгляд парадоксальным. Но кто исправлял плохую кандидатскую математическую работу, тот мог заметить, насколько правильно смотрит на дело Рассел. Кандидат часто много трудится для того, чтобы найти первое ложное уравнение; но лишь только он его получил, для него уже не представляет никакого труда сделать из него самые неожиданные выводы, из которых иные могут оказаться и точными.
Отсюда ясно, насколько новая логика богаче классической логики. Символы разрослись и сочетаются в разнообразные комбинации, число которых уже неограниченно. Вправе ли мы так сильно расширять смысл слова «логика». Разбирать этот вопрос и вступать с Расселом в спор о слове – занятие бесцельное. Признаем то, чего требует Рассел, но не будем удивляться, если окажется, что некоторые истины, которые мы считали несводимыми к логике в старом смысле этого слова, теперь сводятся к новой логике, которая совершенно отличается от прежней.
Мы ввели большое число новых понятий, и эти понятия не были простыми комбинациями старых. Рассел на этот счет не обманывался; не только в начале первой главы, т. е. логики предложений, но в начале второй и третьей глав, т. е. логики классов и отношений, он вводит новые слова, которые принимает как определению не подлежащие.
Но это не все, он вводит также принципы, которые признает недоказуемыми. Но эти недоказуемые принципы являются обращениями к интуиции, являются априорными синтетическими суждениями. Мы принимали их за интуитивные, когда встречали их в более или менее явной форме в математических трактатах. Но изменился ли их характер от того, что смысл слова «логика» расширился и что мы находим их теперь в книге, носящей заголовок «Трактат по логике»? Они не изменили своей природы, они изменили лишь свое место.
Можно ли рассматривать эти принципы как скрытые определения?
Чтобы дать положительный ответ на этот вопрос, нужно было бы быть в состоянии доказать, что они не заключают в себе противоречия. Нужно установить, что, как бы далеко мы ни проводили ряд дедукций, мы никогда не впадем в противоречие с собой.
Можно было бы попытаться рассуждать таким образом. Мы можем проверить, что операции новой логики, будучи приложены к посылкам, не заключающим противоречия, приводят только к следствиям, также свободным от противоречия. Если, следовательно, после n операций мы не пришли к противоречию, то мы не придем к противоречию после n + 1 операций. Невозможно, следовательно, наступление такого момента, когда противоречие началось бы, а это доказывает, что мы никогда не можем к нему прийти. Вправе ли мы так рассуждать? Нет, ибо это значило бы прибегнуть к полной индукции; принцип же полной индукции, будем это помнить, еще нам неизвестен.
Читать дальшеИнтервал:
Закладка: