Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Мы не вправе, следовательно, рассматривать эти аксиомы как скрытые определения, и нам остается только один исход: допустить для каждой из них новый акт интуиции. И такова именно, я думаю, мысль Рассела и Кутюра.
Таким образом, каждое из девяти неопределяемых понятий и каждое из двадцати недоказуемых предложений (я думаю, что если бы я считал, то насчитал бы их несколько больше), которые составляют основу новой логики, логики в широком смысле слова, предполагают акт новый, независимый от нашей интуиции, предполагают – почему этого не сказать? – настоящее синтетическое априорное суждение. В этом вопросе все, кажется, согласны. Но Рассел утверждает, что этими обращениями к интуиции дело и закончится, что в других обращениях не будет более нужды и можно будет построить всю математику, не вводя никакого нового элемента. Это мне и кажется сомнительным.
Кутюра часто повторяет, что эта новая логика совершенно не зависит от идеи о числе. Я не стану подсчитывать, как часто в его изложении встречаются числительные, как количественные, так и порядковые, или неопределенные прилагательные, как, например, «несколько». Процитируем, однако, некоторые примеры:
«Логическое произведение двух или нескольких предложений есть…»
«Все предложения допускают только двоякую оценку: как истинные или как ложные».
«Относительное произведение двух отношений есть отношение».
«Отношение имеет место между двумя терминами» и т. д.
В некоторых случаях можно было бы избежать неудобства такого выражения, но иногда оно требуется существом дела. Отношение не может быть понято без двух терминов; нельзя иметь интуиции отношения, не имея в то же время интуиции двух его терминов; мало того, мы должны усмотреть, что есть два термина, ибо для того, чтобы можно было постигнуть отношение, необходимо, чтобы этих терминов было два и только два.
Я подхожу к тому, кто Кутюра называет теорией расположения (или порядка) и что является основанием арифметики в собственном смысле этого слова. Кутюра начинает с формулировки пяти аксиом Пеано, независимость которых доказали Пеано и Падоа.
1. Нуль есть целое число.
2. Нуль не следует ни за каким целым числом.
3. Следующее за целым числом есть целое число; к этому следовало бы прибавить: всякое целое число имеет следующее за ним число.
4. Два целых числа равны, если равны следующие за ними числа.
Пятая аксиома есть принцип полной индукции.
Кутюра смотрит на эти аксиомы как на скрытые определения; они содержат выраженные при помощи постулатов определения нуля, целого числа и «следующего числа».
Но, как мы видели, для того чтобы основанное на постулатах определение могло быть принято, необходимо установить, что оно не заключает противоречия.
Имеем ли мы дело здесь с таким именно случаем? Нисколько.
Доказательства этого нельзя дать с помощью примера. Нельзя выбрать часть всех целых чисел, например первые три числа, и доказать, что они удовлетворяют определению.
Если я возьму ряд 0, 1, 2, то увижу, что он удовлетворяет аксиомам 1, 2, 4, 5. Но, для того чтобы он удовлетворял третьей аксиоме, необходимо еще, чтобы 3 было целым числом, следовательно, чтобы ряд 1, 2, 3 удовлетворял всем аксиомам. При проверке окажется, что ряд 0, 1, 2, 3 удовлетворяет аксиомам 2, 4, 5, но третья аксиома требует, сверх того, чтобы 4 было целым числом и чтобы ряд 0, 1, 2, 3, 4 удовлетворял всем аксиомам, и т. д.
Нет, следовательно, возможности доказать аксиомы для нескольких целых чисел, не доказывая их для всех. Приходится отказаться от доказательства путем примера.
Остается собрать все выводы из наших аксиом и рассмотреть, не заключают ли они в себе противоречия. Если бы число этих выводов было конечное, то это было бы легко сделать; но число выводов бесконечно велико, они охватывают всю математику или по крайней мере всю арифметику. Что же делать? Быть может, повторить рассуждение, указанное в разделе III.
Но мы уже сказали, что это рассуждение основано на полной индукции, а между тем дело идет именно о том, чтобы оправдать принцип полной индукции.
Я перехожу теперь к тому капитальному труду Гильберта, о котором последний сделал сообщение на Математическом конгрессе в Гейдельберге. Французский перевод этого труда, сделанный Пьером Бутру, появился в «Математическом образовании»; английский перевод, сделанный Халстедом, появился в «The Monist». В этом труде, изобилующем самыми глубокими мыслями, автор преследует такую же цель, как и Рассел, но во многих случаях отклоняется от своего предшественника.
«Если мы присмотримся ближе, – говорит он, – то мы заметим, что логические принципы, в той форме, в какой их обыкновенно представляют, уже включают в себя известные арифметические понятия, как, например, понятие совокупности, а в некоторой мере и понятие о числе. Таким образом, мы находимся как бы в заколдованном круге, и вот почему, во избежание всякого парадокса, мне кажется необходимым развивать одновременно логику и принципы арифметики».
Как мы видели выше, то, что Гильберт говорит о принципах логики в той форме, в какой их себе обыкновенно представляют, одинаково приложимо и к логике Рассела. Для Рассела логика предшествует арифметике; для Гильберта они «одновременны». Мы встретимся ниже с другими, более глубокими различиями, но мы будем их отмечать по мере того, как они перед нами предстанут; я предпочитаю следить шаг за шагом за развитием мысли Гильберта и цитировать текстуально наиболее важные места его работы.
«Рассмотрим прежде всего предмет 1». Заметим, что в это рассмотрение мы отнюдь не включаем понятия о числе, ибо само собой разумеется, что 1 в данном случае является только символом и что мы не стремимся узнать его значение. «Группы, образованные этим предметом, повторенным два, три или несколько раз…» Ну, здесь уже дело меняется; если мы вводим слова «два», «три» и в особенности «несколько», мы вводим понятие числа, а в таком случае понятие конечного целого числа, к которому нас приведет это рассуждение, окажется запоздалым. Автор был слишком предусмотрителен, чтобы не заметить этого petitio principii. В конце своего труда он пытается загладить погрешность.
Гильберт вводит затем два простых предмета 1 и =, рассматривает все комбинации из этих двух предметов, затем комбинации этих комбинаций и т. д. Само собой разумеется, что при этом нужно забыть обычное значение этих двух знаков, не нужно приписывать им никакого значения. Затем Гильберт распределяет эти комбинации в два класса, в класс «сущего» и в класс «не сущего», и впредь до следующего соглашения это распределение совершенно произвольно. Всякое утвердительное предложение показывает нам, что комбинация принадлежит классу сущего; всякое отрицательное предложение показывает, что известная комбинация относится к классу не сущего.
Читать дальшеИнтервал:
Закладка: