Жюль Пуанкаре - Теорема века. Мир с точки зрения математики
- Название:Теорема века. Мир с точки зрения математики
- Автор:
- Жанр:
- Издательство:Литагент Алгоритм
- Год:2020
- Город:М.
- ISBN:978-5-907255-12-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но, очевидно, было бы неправильно сказать, что они окончательно разрешили спор между Кантом и Лейбницем и разрушили кантову теорию математики. Я не знаю, стоят ли они сами на этой точке зрения, но если они это думают, то они ошибаются.
Глава V. Последние усилия логистиков
Логистики пытались ответить на все приведенные выше соображения. Для такого ответа им надобно было преобразовать логистику, и Рассел в особенности видоизменил в некоторых отношениях первоначальные ее точки зрения. Не входя в детали дела, я хочу остановиться только на двух вопросах, на мой взгляд, наиболее важных.
Дали ли правила логистики действительно доказательства своей плодотворности и непогрешимости? Верно ли, что они имеют возможность доказать принцип полной индукции, совершенно не обращаясь к интуиции?
Что касается плодотворности, то Кутюра, по-видимому, строит наивные иллюзии. Логистика, по его мнению, дает изобретательности в ее распоряжение «леса и крылья». А на следующей странице он говорит: «десять лет тому назад Пеано опубликовал первое издание своего „Formulaire“».
Как, уже десять лет, как вы имеете крылья, и вы еще не полетели!
Я питаю величайшее уважение к Пеано, который сделал превосходные работы (например, его кривая, которая заполняет целую площадь), но в конце концов он не ушел ни дальше, ни выше, ни быстрее, чем большая часть бескрылых математиков, и этот путь он мог бы ведь проделать так же хорошо на своих ногах.
Я, напротив, вижу в логистике только помеху для изобретателя; с ее помощью мы отнюдь не выигрываем в сжатости; если нужны 27 уравнений, для того чтобы установить, что 1 есть число, то сколько нужно будет уравнений, чтобы доказать настоящую теорему? Если мы различаем вместе с Уайтхедом индивид x , класс, единственный член коего есть x и который называется ιx , затем – класс, единственный член которого есть класс с единственным членом x и который называется ιιx , то можно ли думать, что эти различия, как бы ни были они полезны, облегчат нам движение вперед?
Логистика заставляет нас сказать все то, что обыкновенно подразумевается; она заставляет нас двигаться шаг за шагом; это, быть может, делает движение более верным, но не более быстрым.
Вы даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи – единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках.
Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет.
Вы не вправе сказать нам: «мы ошибаемся – это правда, но вы также ошибаетесь». Но наша ошибка для нас – несчастье, большое несчастье, для вас – это смерть.
Еще менее вправе вы сказать: «Разве непогрешимость арифметики препятствует ошибкам сложения? Правила счета непогрешимы, и все же мы видим, как ошибаются те, которые их применяют». Однако, просматривая их переделки, легко заметить, в какой момент они уклонились от правил. Здесь же совсем не то; логистики применили свои правила и впали в противоречие. Это настолько верно, что они готовы изменить правила и «пожертвовать понятием класса». Зачем же изменять правила, если они были непогрешимы?
«Мы не обязаны, – говорите вы, – разрешать hic et nunc все возможные проблемы». О, мы от вас не требуем столь многого; если бы вы, разрешая проблему, не давали никакого решения, мы ничего не сказали бы; но вы, напротив, даете нам два решения, которые друг другу противоречат и из которых, следовательно, по крайней мере одно ложно. А это банкротство.
Рассел старается примирить эти противоречия и признает, что для такого примирения необходимо «ограничить понятие класса или даже пожертвовать им». Кутюра же, учитывая успех этой попытки, прибавляет: «если логистики достигнут того, что не удавалось другим, Пуанкаре не откажется вспомнить эту фразу и воздать должное решению логистики».
Но это не так: логистика существует, она имеет свое уложение, вышедшее уже в четырех изданиях; или, правильнее, это уложение и есть сама логистика. Готов ли Рассел показать, что по крайней мере одно из двух противоречивых суждений вышло за пределы уложения? Отнюдь нет; он готов изменить эти законы, а некоторые из них и уничтожить. Если он успешно выполнит свою попытку, то я воздам должное интуиции Рассела, но не логистике Пеано, которую он таким образом разрушит.
Я привел выше два главных возражения против того определения целого числа, которое принято в логистике. Какой ответ дает Кутюра на первое возражение?
Что обозначает в математике слово существовать? Оно обозначает, сказал я, отсутствие противоречия. Кутюра возражает против этого. Он говорит: «Логическое существование есть нечто отличное от отсутствия противоречия. Оно заключается в том факте, что некоторый класс не пуст; сказать: „элементы а существуют“ – значит, согласно определению, утверждать, что класс не есть нулевой». И, само собой разумеется, утверждать, что класс а не есть нулевой, значит, согласно определению, утверждать, что элементы а существуют. Но одно из этих утверждений так же лишено смысла, как и другое, если только они оба не обозначают либо то, что можно это а видеть или осязать, либо то, что можно постигнуть а , не впадая в противоречие. Но в первом случае мы имеем дело с утверждением, которое принимают физики и натуралисты; во втором случае – с утверждением, которое выставляют логики и математики.
Для Кутюра не отсутствие противоречия доказывает бытие, а бытие доказывает отсутствие противоречия. Чтобы установить существование класса, нужно установить при помощи примера, что есть какой-нибудь индивид, принадлежащий к этому классу. «Но, – скажут, – как доказать существование такого индивида? Не надобно ли, чтобы это существование было установлено для того, чтобы мы из него могли вывести существование класса, к которому принадлежит индивид? Совсем нет. Как ни покажется парадоксальным такое утверждение, нужно сказать, что никогда не доказывают существования индивида. Индивиды уже по одному тому, что они индивиды, всегда рассматриваются как существующие. Абсолютно говоря, нет нужды высказывать, что индивид существует, а нужно лишь сказать, что он существует в классе». Кутюра находит свое собственное утверждение парадоксальным, и, конечно, не он один найдет его таковым. Это утверждение, однако, должно иметь свой смысл. Кутюра, без сомнения, хочет сказать, что существование индивида, который является единственным в мире и о котором ничего не утверждается, не может повлечь противоречия; пока он остается единственным, он, очевидно, никого не стесняет. Пусть так; допустим, «абсолютно говоря», существование индивида; но с этим существованием нам нечего делать; нам нужно будет доказать существование индивида «в классе», а для этого надобно будет доказать, что утверждение «такой-то индивид принадлежит к такому-то классу» не стоит в противоречии ни с самим собой, ни с другими принятыми постулатами.
Читать дальшеИнтервал:
Закладка: