Жюль Пуанкаре - Теорема века. Мир с точки зрения математики

Тут можно читать онлайн Жюль Пуанкаре - Теорема века. Мир с точки зрения математики - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Алгоритм, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Теорема века. Мир с точки зрения математики
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Алгоритм
  • Год:
    2020
  • Город:
    М.
  • ISBN:
    978-5-907255-12-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Жюль Пуанкаре - Теорема века. Мир с точки зрения математики краткое содержание

Теорема века. Мир с точки зрения математики - описание и краткое содержание, автор Жюль Пуанкаре, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики - читать онлайн бесплатно ознакомительный отрывок

Теорема века. Мир с точки зрения математики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Жюль Пуанкаре
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пожалуй, мне возразят, что эта гипотеза может привести к противоречивым результатам и что тогда придется от нее отказаться. Так, в вопросе о происхождении жизни можно прийти к заключению, что живые существа были всегда, так как современный мир всегда показывает нам, что жизнь рождается из жизни; но можно также заключить, что они существовали не всегда, потому что применение современных физических законов к настоящему состоянию земного шара показывает нам, что было время, когда земной шар был столь сильно нагрет, что жизнь на нем была невозможна. Однако противоречия этого рода всегда могут быть устранены двумя способами: можно допустить, что современные законы природы не в точности таковы, какими мы их принимаем; или же можно допустить, что законы природы в настоящее время таковы, какими мы их принимаем, но что так было не всегда.

Ясно, что современные законы никогда не будут известны достаточно хорошо, чтобы нельзя было принять первое из этих двух решений и таким образом избегнуть необходимости вывода об эволюции естественных законов.

С другой стороны, допустим такую эволюцию: примем, если угодно, что человечество живет достаточно долго, так что эта эволюция могла иметь очевидцев. Пусть, например, то же самое условие влечет различные следствия в каменноугольную эпоху и в четвертичную эпоху. Это, очевидно, означает, что условия приблизительно одинаковы; если бы все обстоятельства были тождественны, каменноугольная эпоха была бы неразличима от четвертичной; очевидно, это – не то, что мы предполагаем. Остается заключить, что такое-то условие, сопровождаемое таким-то побочным обстоятельством, производит такое-то следствие, а то же самое условие, сопровождаемое другим побочным обстоятельством, производит другое следствие. Время не играет здесь никакой роли.

Недостаточно развившаяся наука формулирует закон, согласно которому определенное условие всегда вызывает определенное следствие. Такой закон, не учитывающий побочных обстоятельств, является не более как приближенным и вероятным, и он должен быть заменен другим законом, который учтет эти побочные обстоятельства и явится более приближенным и более вероятным. Таким образом, мы постоянно приходим опять к тому же процессу, который был рассмотрен выше, и если бы человечество открыло что-нибудь в этом роде, то оно не сказало бы, что законы испытали эволюцию, но сказало бы, что обстоятельства видоизменились.

Таковы различные значения слова «случайность». Леруа сохраняет их все, не различая их достаточно, и еще вводит новое. Экспериментальные законы являются лишь приближенными; если некоторые из них представляются нам точными, то это потому, что мы искусственно преобразовали их в то, что я выше назвал принципом. Это преобразование сделано нами свободно, и так как произвол, в силу которого мы совершили его, есть нечто в высшей степени случайное, то эту случайность мы сообщили самому закону. В этом смысле мы имеем право сказать, что детерминизм предполагает свободу, так как мы становимся детерминистами свободно. Быть может, найдут, что такая точка зрения предоставляет слишком большую роль номинализму и что введение этого нового смысла слова «случайность» не принесет большой помощи при решении всех вопросов, которые естественно возникают здесь и о которых мы только что сказали несколько слов.

Я отнюдь не хочу исследовать здесь основания принципа индукции; я очень хорошо знаю, что я не имел бы успеха: оправдать этот принцип так же трудно, как и обойтись без него. Я хочу лишь показать, как ученые его применяют или бывают вынуждены применять.

Когда воспроизводится одно и то же условие, должно воспроизводиться то же самое следствие; такова обычная формулировка. Но в такой форме этот принцип не мог бы оказать никаких услуг. Для того чтобы можно было сказать, что воспроизведено то же самое условие, необходимо воспроизведение всех обстоятельств, так как ни одно из них не является абсолютно безразличным, и притом воспроизведение должно быть точным. А так как этого никогда не будет, то принцип не мог бы иметь никакого применения.

Поэтому мы должны видоизменить формулировку и сказать: если однажды условие А произвело следствие В , то условие А’ , мало отличающееся от А , произведет следствие В’ , мало отличающееся от В . Но как нам узнать, что условия A и A’ «мало отличаются» друг от друга? Если одно из обстоятельств может быть выражено числом и если это число в двух случаях имеет весьма близкие друг к другу значения, то смысл слов «мало отличающийся» относительно ясен; принцип означает тогда, что следствие есть непрерывная функция предшествующего условия. А в качестве практического правила приходим к выводу, что мы вправе производить интерполяцию. В самом деле, ученые производят ее на каждом шагу; без интерполяции наука была бы невозможна.

Однако заметим одно обстоятельство. Искомый закон может быть представлен кривою. Опыт указал нам некоторые точки этой кривой. В силу только что изложенного принципа мы полагаем, что эти точки могут быть соединены непрерывной линией. Мы чертим эту линию на глаз. Новые опыты дадут нам новые точки кривой. Если эти точки лежат вне начерченной раньше линии, то нам придется видоизменить нашу кривую, но не отказаться от нашего принципа. Всегда можно провести непрерывную кривую через любое число как угодно расположенных точек. Если эта кривая будет чересчур причудлива, то мы, несомненно, будем смущены (и даже станем подозревать погрешности опыта), но принцип не будет заподозрен в ошибочности.

Кроме того, между обстоятельствами известного явления всегда бывают такие, которые мы считаем несущественными, и мы будем считать, что А и А’ мало отличаются друг от друга, если они отличаются лишь этими побочными обстоятельствами. Пусть я, например, установил, что водород с кислородом соединяется под действием электрической искры; я уверен, что эти два газа будут соединяться снова, хотя долгота Юпитера успела за это время значительно измениться. Мы допускаем, например, что состояние удаленных тел не может иметь заметного влияния на земные явления, и эта мысль действительно как бы с неизбежностью навязывается нам; но бывают случаи, когда выбор таких практически безразличных обстоятельств сопряжен с большей степенью произвола или, если угодно, требует большего чутья.

Еще одно замечание. Принцип индукции был бы неприложим, если бы в природе не существовало большого числа тел, сходных или почти сходных между собой, и если бы, например, по одному куску фосфора нельзя было заключать о другом куске фосфора.

Если мы призадумаемся над этими соображениями, то проблема детерминизма и случайности явится нам в новом свете.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жюль Пуанкаре читать все книги автора по порядку

Жюль Пуанкаре - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема века. Мир с точки зрения математики отзывы


Отзывы читателей о книге Теорема века. Мир с точки зрения математики, автор: Жюль Пуанкаре. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x