Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной]

Тут можно читать онлайн Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент МИФ без БК, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесконечная сила [Как математический анализ раскрывает тайны вселенной]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент МИФ без БК
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-00100-388-5
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Строгац - Бесконечная сила [Как математический анализ раскрывает тайны вселенной] краткое содержание

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам.
Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика.
На русском языке публикуется впервые.

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать онлайн бесплатно ознакомительный отрывок

Бесконечная сила [Как математический анализ раскрывает тайны вселенной] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Строгац
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Суть в том, что степенные ряды вооружили Ньютона универсальным инструментом анализа. С ними он мог брать интегралы, находить корни алгебраических уравнений и вычислять значения неалгебраических функций, таких как синусы, косинусы и логарифмы. Как заметил ученый, «с их помощью анализ справляется, я бы сказал, со всеми задачами» [214].

Ньютон как мастер мэшапа

Я не верю, что Ньютон делал это сознательно, но в своей работе со степенными рядами он вел себя как мастер математического мэшапа [215]. Он подошел к задаче площади в геометрии через принцип бесконечности древних греков и сплавил его с индийскими десятичными дробями, исламской алгеброй и французской аналитической геометрией.

Некоторые математические заимствования видны в структуре его уравнений. Например, сравните бесконечный ряд чисел, использованный Архимедом при квадрировании параболы:

с бесконечным рядом символов которые Ньютон использует при квадрировании - фото 118

с бесконечным рядом символов, которые Ньютон использует при квадрировании гиперболы:

Если вы подставите в ряд Ньютона он станет рядом Архимеда В этом смысле ряд - фото 119

Если вы подставите картинка 120в ряд Ньютона, он станет рядом Архимеда. В этом смысле ряд Ньютона вобрал в себя ряд Архимеда как частный случай.

Более того, сходство в их работе распространяется и на рассматриваемые ими геометрические задачи. Оба берут сегменты; Архимед использует свой ряд для квадрирования (нахождения площади) сегмента параболы, а Ньютон – свой усовершенствованный степенной ряд

для квадрирования кругового сегмента и другой степенной ряд для квадрирования - фото 121

для квадрирования кругового сегмента и другой степенной ряд

для квадрирования сегмента гиперболы На самом деле ряды Ньютона неизмеримо - фото 122

для квадрирования сегмента гиперболы.

На самом деле ряды Ньютона неизмеримо мощнее, чем ряд Архимеда, потому что позволяли находить площади не одного, а бесконечного количества круговых и гиперболических сегментов. Вот что дал ученому абстрактный символ x . Он позволил ему непрерывно и безболезненно менять задачи; менять форму сегментов, сдвигая x влево или вправо, и в результате то, что казалось одним бесконечным рядом, на деле оказывалось бесконечным семейством бесконечных рядов, по одному ряду для каждого конкретного x . Такова мощь степенных рядов. Они дали возможность одним махом решить бесконечно много задач.

Однако повторюсь: Ньютон не решил бы ни одной задачи, если бы не стоял на плечах гигантов. Он объединил, синтезировал и обобщил идеи своих великих предшественников. Он унаследовал принцип бесконечности от Архимеда; научился касательным у Ферма; родиной десятичных дробей была Индия; переменные восходят к арабской алгебре; представление кривых на координатной плоскости позаимствовано из трудов Декарта; раскованные ухищрения с бесконечностью, дух экспериментирования и открытость к допущениям и индукции пришли от Валлиса. Он смешал все это вместе, чтобы создать нечто новое – то, что мы до сих пор используем для решения задач анализа: универсальный метод степенных рядов.

Частный анализ

Пока Ньютон работал со степенными рядами зимой 1664–1665 годов, Европу захлестнула страшная эпидемия, двигавшаяся, подобно волне, от Средиземного моря в Голландию. Когда бубонная чума достигла Лондона, она еженедельно убивала сначала сотни, а затем и тысячи людей. Летом 1665 года Кембриджский университет был временно закрыт. Ньютон отправился домой в семейную усадьбу в Линкольншире.

В течение следующих двух лет он стал лучшим математиком в мире. Но изобретения современного анализа было недостаточно, чтобы занять его ум. Он также открыл закон всемирного тяготения (закон обратных квадратов для гравитации) и применил его к движению Луны, изобрел телескоп-рефлектор и экспериментально показал, что белый свет состоит из всех цветов радуги. Ему не было еще и двадцати пяти. Как он позднее вспоминал, «в те дни я был в расцвете сил юности и думал о математике и философии больше, чем когда-либо впоследствии» [216].

В 1667 году, когда чума утихла, Ньютон вернулся в Кембридж и продолжил свои уединенные занятия. К 1671 году он свел разрозненные части анализа в единое целое. Он разработал метод разложения функций в степенные ряды, значительно улучшил существующие теории касательных, используя идеи движения, установил и доказал основную теорему анализа, которая решила задачу площадей, составил таблицы кривых и их функций площадей и свел все это в хорошо настроенную систематизированную вычислительную машину.

Но за стенами Тринити-колледжа он был невидим. Как, собственно, и хотел. Свой секретный источник он держал при себе. Замкнутый и подозрительный, он болезненно относился к критике и ненавидел спорить с кем бы то ни было, особенно с теми, кто его не понимал. Как он позднее объяснял, ему не нравится, когда его «изводят мелкие недоучки в математике» [217].

У него была еще одна причина для беспокойства: он знал, что его работа может быть подвергнута нападкам с точки зрения логики. Он использовал алгебру, а не геометрию и беспечно играл с бесконечностью, первородным грехом анализа. Джона Валлиса, чья книга так повлияла на молодого Ньютона, когда тот был студентом, жестко критиковали за то же самое. Томас Гоббс [218], политический философ и второсортный математик, назвал «Арифметику бесконечного» «паршой символов» [219]за то, что она опирается на алгебру, и «гнусной книгой» [220]за использование бесконечности. И Ньютон должен был признать, что его собственная работа была всего лишь анализом, а не синтезом. Она годилась для открытий, но не для доказательств. Он преуменьшал значение своих методов работы с бесконечностью, считая их «недостойными публичных выступлений» [221], а много лет спустя сказал: «Наша обманчивая алгебра вполне пригодна для поиска результатов, но совершенно не годится для создания текстов и передачи их потомкам» [222].

По этим и другим причинам Ньютон скрывал свои достижения. И все же какая-то его часть жаждала признания. Он был сильно расстроен и подавлен, когда Николас Меркатор опубликовал в небольшой книжке Logarithmotechnia, вышедшей в 1668 году, тот же самый ряд для натурального логарифма, который Ньютон открыл тремя годами ранее. Шок и разочарование оттого, что его опередили, побудили Ньютона написать в 1669 году короткую рукопись и распространить ее частным образом среди его немногих доверенных приверженцев. Книга с полным названием «Анализ с помощью уравнений с бесконечным числом членов» ( De Analysi ) выходила далеко за пределы логарифмов. В 1671 году он расширил ее до своего главного труда по анализу – «Трактата о методах рядов и флюксий», известного также как De Methodis , однако рукопись не увидела свет при его жизни; он тщательно берег ее и хранил для личного пользования. De Analysi была опубликована только в 1711 году, а De Methodis появилась только после смерти ученого, в 1736 году.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесконечная сила [Как математический анализ раскрывает тайны вселенной] отзывы


Отзывы читателей о книге Бесконечная сила [Как математический анализ раскрывает тайны вселенной], автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x