Владимир Трошин - Натуральные числа. Этюды, вариации, упражнения

Тут можно читать онлайн Владимир Трошин - Натуральные числа. Этюды, вариации, упражнения - бесплатно ознакомительный отрывок. Жанр: Математика, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Натуральные числа. Этюды, вариации, упражнения
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2020
  • ISBN:
    978-5-532-06306-8
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Трошин - Натуральные числа. Этюды, вариации, упражнения краткое содержание

Натуральные числа. Этюды, вариации, упражнения - описание и краткое содержание, автор Владимир Трошин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Тысячи лет человечество использует в практической деятельности и одновременно изучает натуральные числа. В них привлекает внешняя простота, которая при внимательном рассмотрении превращается в необозримую бесконечность. Этим объясняется тот факт, что многие проблемы, связанные с натуральными числами, поставлены очень давно, но не решены до сих пор. Люди постоянно продолжают находить в натуральных числах что-то новое и интересное. Об этом интересном рассказывает книга. Читайте, расширяйте свой кругозор, тренируйте ум, развивайтесь.

Натуральные числа. Этюды, вариации, упражнения - читать онлайн бесплатно ознакомительный отрывок

Натуральные числа. Этюды, вариации, упражнения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Трошин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С другой стороны выделенное подмножество можно рассматривать как числовую последовательность, обладающую определенным свойством и говорить не просто о подмножестве, а об упорядоченном подмножестве, в котором можно пронумеровать его члены, то есть превратить подмножество в последовательность.

Еще один подход в рассмотрении натуральных чисел – это извлечь из натурального ряда конкретное число, рассмотреть свойства этого числа, присущие именно ему и поставить вопрос, есть ли другие числа, обладающие подобным свойством. Иначе говоря, дать числу характеристику. Особенно интересен вопрос вариативного представления чисел с помощью математических действий и знаков. Например, 100=(1+2+3+4) 2=1 3+2 3+3 3+4 3. В таких вариациях с числами своя, математическая красота. Этими процессами мы и займемся далее.

Натуральный ряд чисел напоминает мне клавиатуру фортепиано с чередованием черных и белых клавишей: нечетное, четное, нечетно, четное и так далее. Представьте себе, что каждому числу был бы присущ определенный звук. Если уж на 88 клавишах фортепиано много веков композиторы создают мелодии, исчерпать разнообразие которых кажется невозможно, то какую музыку услышали бы мы, если бы числа звучали! Подумав об этом, решил писать не главы книги, а этюды, вариации и упражнения. Как будто мы учимся играть на фортепиано.

Вариации на тему разнообразия натуральных чисел

Вариация – произведение, представляющее собой повторение и разработку одной темы в различных видоизменениях.

Эта книга о натуральных числах, следовательно, о математике, но написана она на русском языке, и при изложении материала невозможно обойтись без прилагательных. Поэтому поговорим о прилагательных, которыми могут характеризоваться различные числа. Уверяю вас, в этом направлении можно найти много интересного, возможно, ранее неизвестного вам. За основу берем узкую область математики – только натуральные числа (первое прилагательное). При этом мы должны отбросить такие прилагательные как: отрицательные, целые, противоположные, дробные, рациональные, иррациональные, трансцендентные, алгебраические, действительные, вещественные, комплексные и гиперкомплексные. Все эти слова относятся к последующим расширениям множества натуральных чисел, не входящим в область нашего рассмотрения. Думаете, после этого останется мало прилагательных, которые можно «приложить» к натуральным числам? Как бы ни так, их еще удивительно много. В первую очередь натуральные числа являются положительными числами (второе прилагательное), к которым относятся все числа большие нуля.

Это были два общих определения, относящиеся ко всем натуральным числам. Далее мы будем использовать некие характеристические свойства, позволяющие выделить определенные числа из общей массы натуральных чисел или разбить их на непересекающиеся, а может быть и пересекающиеся подмножества. Классификацию будем вести одновременно по двум уровням. В первый уровень выделим основополагающие классы чисел, а во второй производные от основных определений, менее значимые.

Первый уровень классификации

Критерий – количество цифр в числе

По количеству цифр в записи числа натуральные числа можно разделить на следующие непересекающиеся подмножества:

однозначные , состоящие из одной цифры: 1, 2, 3, 4, 5, 6, 8, 9 (их всего девять);

двузначные , состоящие из двух цифр: от 10 до 99 (их девяносто);

трехзначные , от 100 до 999 (их девятьсот) и так далее, с обобщающим прилагательным – многозначные .

Критерий – делимость чисел

Взяв в качестве инструмента для классификации деление чисел, получаем разбиение натуральных чисел на четные и нечетные , простые и составные , избыточные и недостаточные , наконец, совершенные и дружественные .

Поговорим о каждом виде чисел подробнее.

Начнем с четных и нечетных , с ними нет никаких затруднений, они изучаются в школе. Четными называются числа, которые делятся на 2 без остатка: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,…. Нечетными называются числа, которые не делятся на 2, а дают остаток 1 при делении на 2: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,….

В натуральном ряду чисел идут попеременно нечетное число, четное число, нечетное, четное. При сложении двух четных чисел, получается четное число, при сложении двух нечетных чисел тоже получается четное число: 8+18=26, 9+19=28. Если складывают четное число с нечетным, то получается нечетное число. Если умножаются нечетные числа, то получается число нечетное, а если хотя бы один сомножитель четный, то и всё произведение будет четным. Деление на четные и нечетные числа разбивает множество натуральных чисел на два равных, бесконечных и непересекающиеся подмножества.

По-другому произойдет разбиение натуральных чисел, если ввести более широкое понятие кратность . Натуральное число, которое делится на данное натуральное число без остатка, называется кратным данного числа. Про четные числа можно сказать, что они кратны числу 2.

Далее можно говорить о числах, которые кратны 3: 3, 6, 9, 12, 15, 18, …; кратны 4: 4, 8, 12, 16, 20, …; кратны 5: 5, 10, 15, 20, … и так далее. Получаются пересекающиеся подмножества, имеющие общие элементы. Так число 12 кратно 2, 3, 4, 6 и 12. Ему хоть разорвись, но нужно попасть в пять различных подмножеств. В них же попадут числа 24, 48 и другие. Любое натуральное число имеет бесконечно много чисел кратных ему. Наименьшим из кратных некоторого числа является само это число. Например, наименьшее число кратное 7 – это само число 7. Получили еще одно прилагательное для характеристики натуральных чисел – кратное .

Критерии – количество делителей и их суммы

Натуральное число, имеющее ровно два делителя (единицу и само себя), называется простым . Это одно из важнейших подмножеств натуральных чисел. Доказано, что простых чисел бесконечно много, и написано о них бесконечно много, так как они не так уж просты, как их назвали, поэтому о них поговорим чуть позже и отдельно.

Все натуральные числа, кроме единицы и простых, имеют более двух делителей. Натуральные числа, имеющие более двух делителей, называются составными . В связи с делимостью чисел рассматривают две операции: сумма всех делителей числа + dn , включает само это число, и сумма собственных делителей + sn , которая рассматривается без самого числа. Например, + d 12=1+2+3+4+6+12=28; + s 12=1+2+3+4+6=16.

С помощью суммы собственных делителей числа, все числа делятся на три класса:

если сумма собственных делителей меньше самого числа ( + sn < n ), то число называется недостаточным ;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Трошин читать все книги автора по порядку

Владимир Трошин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Натуральные числа. Этюды, вариации, упражнения отзывы


Отзывы читателей о книге Натуральные числа. Этюды, вариации, упражнения, автор: Владимир Трошин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x