Ю. Щербакова - Начертательная геометрия: конспект лекций

Тут можно читать онлайн Ю. Щербакова - Начертательная геометрия: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Начертательная геометрия: конспект лекций
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2007
  • Город:
    Москва
  • ISBN:
    5-699-19332-4
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ю. Щербакова - Начертательная геометрия: конспект лекций краткое содержание

Начертательная геометрия: конспект лекций - описание и краткое содержание, автор Ю. Щербакова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие представляет собой курс лекций и предназначено для студентов, сдающих экзамен по специальности «Начертательная геометрия».

Подготовлено с учетом требований Министерства образования РФ.

Начертательная геометрия: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Начертательная геометрия: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ю. Щербакова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. Построение следов плоскости

Рассмотрим построение следов плоскости Р , которая задана парой пересекающихся прямых I и II (рис. 45).

Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах плоскости. Поэтому следы плоскости, которые необходимо найти, должны проходить через одноименные следы всех прямых, находящихся в этой плоскости, т. е. находим следы обеих прямых I и II. Соединив их горизонтальные следы hh 2, можно получить горизонтальный след P hплоскости Р , а если соединить фронтальные 1, и 2, можно получить фронтальный след P v.

Оба следа P hи Р должны пересекаться на оси х в точке схода Р хили оказаться - фото 35

Оба следа PР должны пересекаться на оси х в точке схода Р хили оказаться одновременно ей параллельными. Таким способом осуществляется проверка правильности построения, т. е. для построения следов плоскости возможно ограничиться нахождением любых трех следов двух прямых, определяющих плоскость.

7. Различные положения плоскости

Плоскостью общего положенияназывается плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны осям проекций.

Проецирующие плоскости – это плоскости, которые перпендикулярны одной, и только одной, плоскости проекций.

На рисунке 46 показана горизонтально-проектирующая плоскость Р , которая перпендикулярна горизонтальной плоскости; на рисунке 47 – фронтально-проектирующая плоскость Q , которая перпендикулярна фронтальной плоскости, и на рисунке 48 – профильно-проектирующая плоскость R, которая перпендикулярна профильной плоскости.

Среди свойств проецирующих плоскостей можно выделить следующие 1 На одну из - фото 36

Среди свойств проецирующих плоскостей можно выделить следующие.

1. На одну из плоскостей проекций, т. е. на ту, которой данная плоскость перпендикулярна, эта плоскость проецируется в виде прямой линии. В этом случае говорят о проекции плоскости, подразумевая под ней именно эту прямую. Горизонтальнопроектирующая плоскость Р имеет горизонтальную проекцию р (рис. 46), фронтально-проецирующая плоскость Q – фронтальную проекцию (рис. 47), а профильно-проецирующая R – профильную проекцию (рис. 48). Данные проекции совпадают с одноименными следами плоскостей, т. е. p = P h(рис. 46), = Q v(рис. 47) и = R w(рис. 48).

2 Любая фигура которая лежит в проецирующей плоскости проецируется в виде - фото 37

2. Любая фигура, которая лежит в проецирующей плоскости, проецируется в виде отрезка прямой на плоскость проекций, перпендикулярную данной плоскости, т. е. треугольник ABC, который лежит в плоскости Р (рис. 46), имеет горизонтальную проекцию abc на горизонтальной проекции плоскости Р ( р = P h).

3. Фронтали горизонтально-проецирующей плоскости Р (рис. 47) перпендикулярны горизонтальной плоскости, а горизонтали фронтально-проектирующей плоскости Q (рис. 47) перпендикулярны фронтальной плоскости, т. е. перпендикулярность фронталей горизонтальной плоскости определяет горизонтально-проектирующую плоскость, а перпендикулярность горизонталей фронтальной плоскости является признаком фронтально-проектирующей плоскости. Профильно-проектирующая плоскость Р (рис. 47) имеет горизонтали, которые являются одновременно и фронталями; те и другие в этом случае перпендикулярны профильной плоскости.

4 Горизонтальнопроектирующая плоскость Р параллельна оси z поэтому ее следы - фото 38

4. Горизонтально-проектирующая плоскость Р параллельна оси z , поэтому ее следы РP wтакже являются параллельными оси z . Фронтально-проектирующая плоскость Q параллельна оси у , поэтому QQ wпараллельны оси у. Профильно-проектирующая плоскость R параллельна оси х, и ее следы RR vпараллельны оси х . Третьи следы этих плоскостей, а именно P h, QR w, способны занимать любое положение относительно осей проекций в зависимости от углов наклона этих плоскостей к плоскостям проекций.

5. Проектирующие плоскости с плоскостями проекции образуют углы, размеры которых видны на эпюре. На рисунках 46, 47 и 48 обозначен буквой угол между проектирующей плоскостью и горизонтальной плоскостью, буквой – угол с фронтальной плоскостью и буквой – с профильной плоскостью. Важно, что для данных плоскостей один из этих углов обязательно прямой, а два остальных угла составляют в сумме 90°. Данные два угла на эпюре равны углам, которые образуются следами плоскости с осями проекций.

Рассмотрим плоскость которая содержит ось х Эта плоскость рис 49 - фото 39

Рассмотрим плоскость, которая содержит ось х . Эта плоскость (рис. 49) принадлежит к числу профильно-проектирующих; она перпендикулярна профильной плоскости W , так как содержит ось х.

При этом горизонтальный и фронтальный следы RR vсливаются с осью х и не определяют положения плоскости R в пространстве. Для определения плоскости нужно дополнительно задать ее профильную проекцию ( = R w) (рис. 49) или указать положение какой-либо точки А на этой плоскости (рис. 49).

Лекция № 5. Взаимное расположение прямых и плоскостей

1. Взаимное расположение двух плоскостей

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей.

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае когда две плоскости Р и Q параллельны оси х их горизонтальные и - фото 40

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов PQ w. Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v|| Q v, и P hу || Q h.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ю. Щербакова читать все книги автора по порядку

Ю. Щербакова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Начертательная геометрия: конспект лекций отзывы


Отзывы читателей о книге Начертательная геометрия: конспект лекций, автор: Ю. Щербакова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x