Ю. Щербакова - Начертательная геометрия: конспект лекций

Тут можно читать онлайн Ю. Щербакова - Начертательная геометрия: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Начертательная геометрия: конспект лекций
  • Автор:
  • Жанр:
  • Издательство:
    Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e
  • Год:
    2007
  • Город:
    Москва
  • ISBN:
    5-699-19332-4
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ю. Щербакова - Начертательная геометрия: конспект лекций краткое содержание

Начертательная геометрия: конспект лекций - описание и краткое содержание, автор Ю. Щербакова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие представляет собой курс лекций и предназначено для студентов, сдающих экзамен по специальности «Начертательная геометрия».

Подготовлено с учетом требований Министерства образования РФ.

Начертательная геометрия: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Начертательная геометрия: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ю. Щербакова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Прямое утверждение справедливо во всех случаях без исключения. Обратное же утверждение неприменимо в том случае, если хотя бы одна из прямых профильная.

Когда прямые параллельны, на эпюре их одноименные проекции параллельны (рис. 28).

На самом деле плоскости Р и Q проецирующие прямые I и II на горизонтальную - фото 22

На самом деле, плоскости Р и Q , проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в каждой из этих плоскостей можно указать две пересекающиеся прямые, параллельные двум пересекающимся прямым второй плоскости, т. е. прямая I параллельна прямой II, и проектирующий луч Аа параллелен лучу Вb . Но две параллельные плоскости Р и Q пересекут горизонтальную плоскость. В результате этого образуются две параллельные прямые 1 и 2, т. е. горизонтальные проекции прямых I и II параллельны между собой.

Аналогично можно доказать, что и любые другие одноименные проекции обеих прямых также будут параллельны друг другу.

Верно и обратное утверждение: прямые параллельны, если на эпюре их одноименные проекции параллельны.

Если известно что горизонтальные и фронтальные проекции прямых I и II - фото 23

Если известно, что горизонтальные и фронтальные проекции прямых I и II параллельны, будет справедливо следующее: 1 || 2 и 1́|| 2́ (рис. 29).

В этом случае можно сказать, что плоскости РР II, проецирующие прямые I и II на горизонтальную плоскость, параллельны, так как в этих плоскостях можно указать по паре пересекающихся соответственно параллельных прямых (прямые 1 и 2 и проецирующие лучи). Аналогично плоскости QQ IIбудут параллельны.

Прямая I находится в пересечении плоскостей РQ I, а прямая II – в пересечении плоскостей Р IIQ II. Отсюда получаем, что прямая I параллельна плоскости Р II, потому что находится в плоскости, ей параллельной. Однако прямая I параллельна и плоскости Q II. Поэтому прямая I параллельна линии пересечения плоскостей Р IIи Q II, т. е. прямой II.

Доказательство обратного утверждения не имеет смысла для профильных прямых Это - фото 24

Доказательство обратного утверждения не имеет смысла для профильных прямых. Это объясняется тем, что тогда вместо двух плоскостей, проецирующих прямую на горизонтальную и фронтальную плоскости, существует только одна, дважды проецирующая плоскость (рис. 30).

Видно, что вне зависимости от расположения двух профильных прямых I и II в пространстве их горизонтальные и фронтальные проекции всегда параллельны (или сливаются).

Прямые будут являться скрещивающимися, если они не параллельны и не пересекаются. Это вытекает из того, что возможны только три случая взаимного расположения прямых.

Для скрещивающихся прямых справедливы утверждения:

1) точки пересечения одноименных проекций на горизонтальной и фронтальной плоскостях не лежат на одном перпендикуляре к оси х (прямые I и II на рис. 31).

2) хотя бы в одной паре одноименные проекции не параллельны (прямые III и IV на рис. 31).

Рисунок 31 показывает проекции четырех прямых, любая пара из которых скрещивается.

Как и в рассмотренных ранее случаях, обратное утверждение для скрещивающихся прямых несправедливо при условии, что хотя бы одна из прямых является профильной.

5 Перпендикулярные прямые Рассмотрим теорему если одна сторона прямого угла - фото 25

5. Перпендикулярные прямые

Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения.

Приведем доказательство для прямого угла ABC , одна сторона которого ВС параллельна горизонтальной плоскости (рис. 32).

Плоскость в которой находится сторона угла АВ и ее проекция ab - фото 26

Плоскость, в которой находится сторона угла АВ и ее проекция ab , перпендикулярна горизонтальной плоскости, так как содержит перпендикуляр Вb к этой плоскости. Прямая ВС перпендикулярна плоскости Q вследствие ее перпендикулярности двум пересекающимся прямым этой плоскости ( АВ и Вb ). Прямая bc параллельна ВС , т. е. она также перпендикулярна Q , а значит и прямой ab , которая лежит в ней.

Ясно, что если на эпюре одна пара одноименных проекций двух прямых перпендикулярна, а одна из двух остальных проекций параллельна оси х , то такие прямые образуют в пространстве прямой угол.

Предположим, что abbc, b́с́ || x.

Это показано на рисунке 33.

Можно провести через проекцию аb плоскость Q , проектирующую прямую АВ на горизонтальную плоскость (рис. 33). Проекция перпендикулярна плоскости Q вследствие того, что она перпендикулярна двум прямым этой плоскости, т. е. проекции аb (по условию), и проецирующему лучу Вb как перпендикуляру горизонтальной плоскости.

Прямая ВС является параллельной горизонтальной плоскости так как ее - фото 27

Прямая ВС является параллельной горизонтальной плоскости, так как ее фронтальная проекция параллельна оси х , поэтому она параллельна своей горизонтальной проекции, т. е. справедливо выражение ВС || . Следовательно, прямая ВС перпендикулярна плоскости Q и поэтому перпендикулярна прямой АВ вне зависимости от ее положения в плоскости Q .

Через некоторую точку М можно провести огромное количество прямых, которые перпендикулярны данной прямой АВ . Они образуют целую плоскость Р , перпендикулярную АВ (рис. 34).

Из всех перпендикулярных прямых, которые при этом образуются, только одна пересекает данную прямую. Это прямая MN , которая проходит через точку N пересечения прямой АВ и плоскости Р .

Под перпендикуляром к прямой подразумевается прямая, не только перпендикулярная данной прямой, но и пересекающая в отличие от просто перпендикулярных скрещивающиеся прямые.

Прямой угол между скрещивающимися прямыми проецируется на данную плоскость проекций без искажения, если одна из прямых параллельна этой плоскости или лежит в ней.

Лекция № 4. Плоскость

1. Определение положения плоскости

Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции таких элементов плоскости, которые ее определяют.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ю. Щербакова читать все книги автора по порядку

Ю. Щербакова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Начертательная геометрия: конспект лекций отзывы


Отзывы читателей о книге Начертательная геометрия: конспект лекций, автор: Ю. Щербакова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x