Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Название:ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
- Автор:
- Жанр:
- Издательство:Издательский Дом «Бахрах-М», 2001.
- Год:2001
- Город:Самара
- ISBN:ISBN 5-94648-001-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Далее, у нас имеются четыре рекурсивных правила.
ПРАВИЛА ОБРАЗОВАНИЯ: Если x и у правильно сформированы, то следующие четыре строчки также правильно сформированы.
(1) ~ x
(2) < x Λ y >
(3) < x V y >
(4) < x э y >
Например, все следующие строчки правильны:
P атом
~Pпо правилу (1)
~~Pпо правилу (1)
Q'атом
~Q'по правилу (1)
< PΛ ~Q'> по правилу (2)
~< PΛ ~Q'> по правилу (1)
< ~~Pэ Q'> по правилу (4)
< ~< PΛ ~Q'>V< ~~Pэ Q'>> по правилу (3)
Последняя строчка может показаться весьма сложной, но на самом деле, она построена всего лишь из двух компонентов — двух предыдущих строчек. Каждая из них, в свою очередь, построена из предыдущих строчек… и так далее. Происхождение любой правильно сформированной строчки может быть прослежено до ее элементарных составляющих — атомов. Для этого вы просто применяете правила в обратном порядке до тех пор, пока это возможно. Этот процесс рано или поздно должен кончиться, поскольку каждое правило вывода — удлиняющее правило; идя в обратном порядке, мы непременно дойдем до атомов.
Таким образом, метод разложения строчек служит проверкой их правильности. Это — нисходящая процедура разрешения для правильно-сформированности . Можете проверить, как вы поняли эту процедуру, найдя, какие из ниже приведенных строчек правильно сформированы:
(1) < P>
(2) < ~P>
(3) < PΛ QΛ R>
(4) < PΛ Q>
(5) << PΛ Q>Λ< Q~Λ P>>
(6) < PΛ ~P>
(7) << PV< Qэ R>>Λ< ~PV ~R'>>
(8) < PΛ Q>Λ< QΛ P>
(Ответ. Те строчки, номера которых являются числами Фибоначчи, сформированы неправильно; остальные — правильно.)
Сейчас мы познакомимся с остальными правилами вывода, при помощи которых строятся теоремы системы. Во всех этих правилах символы « x » и « y» всегда относятся к правильно сформированным строчкам.
ПРАВИЛО РАЗДЕЛЕНИЯ: Если < x Λ y > — теорема, то и x и у — также теоремы.
Вероятно, вы уже догадались, что значит символ «Λ». (Подсказка: это то самое слово, что причинило столько проблем в Диалоге.) Из следующего правила вы сможете вывести значение тильды (« ~»):
ПРАВИЛО ДВОЙНОЙ ТИЛЬДЫ: Строчка « ~~» может быть выброшена из любой теоремы. Она также может быть вставлена в любую теорему, если при этом получается правильно сформированная строчка.
Эта система отличается тем, что в ней нет аксиом — одни лишь правила. Вспомнив наши предыдущие формальные системы, вы можете спросить: как же здесь могут вообще существовать теоремы? Откуда они появляются? Ответом является правило, фабрикующее теоремы «из воздуха» — оно не требует ввода «старых теорем». (Остальные правила, наоборот, нуждаются во вводных данных.) Это правило называется « правилом фантазии .» Почему я его так окрестил? Ответ прост.
Чтобы использовать это правило, вы должны записать любую приглянувшуюся вам правильно сформированную строчку x , и затем спросить себя: что бы произошло, если строчка x действительно оказалась бы аксиомой или теоремой? После чего вы предлагаете системе ответить на этот вопрос; это значит, что вы начинаете вывод, используя x как первую строчку. Пусть у будет последней строчкой. От x до у включительно все является фантазией ; x — посылка фантазии, а у — ее результат. Следующий шаг — выход из области фантазии; мы узнали, что
Если бы x являлось теоремой, то у также являлось бы теоремой.
Вы можете спросить: «Где же здесь настоящая теорема?» Это строчка:
< x э y >
Обратите внимание на то, как эта строчка напоминает предложение, напечатанное выше.
Чтобы отметить вход и выход в область фантазии, мы будем использовать квадратные скобки «[» и «]», соответственно. Таким образом, увидев левую квадратную скобку, вы будете знать, что вы «проталкиваетесь» в область фантазии, и следующая строчка будет посылкой . Увидев правую квадратную скобку, вы будете знать, что вы «выталкиваетесь» обратно из воображаемого мира, и что предыдущая строчка была результатом . Удобно (хотя и не необходимо) начинать те строчки вывода, что относятся к области фантазии, с нового абзаца.
Ниже приводится иллюстрация правила фантазии в действии. Строчка P служит посылкой. (На самом деле, P не является теоремой, но для нас это не важно — мы просто задаем вопрос «а что, если бы она была теоремой?») Мы воображаем следующее:
[ проталкивание в область фантазии
P посылка
~~P результат (по правилу двойной тильды)
] выталкивание из области фантазии
Наша фантазия показывает, что:
если бы Pбыло теоремой, ~~Pтакже было бы теоремой.
Теперь мы постараемся «затолкать» это высказывание русского языка (метаязык) в рамки формальной нотации (предметный язык): < Pэ ~~P>. Таким образом, наша первая теорема исчисления высказываний должна подсказать вам интерпретацию символа «э».
Вот еще один пример вывода с помощью правила фантазии:
[проталкивание в область фантазии
< PΛ Q> посылка
Pотделение
Qотделение
< QΛ P> соединение
]выталкивание из области фантазии
<< PΛ Q>э< QΛ P>> правило фантазии
Необходимо помнить, что только последняя строчка здесь является настоящей теоремой; все остальное — чистая фантазия.
Как вы могли догадаться из рекурсивной терминологии («проталкивание» и «выталкивание»), правило фантазии может быть использовано рекурсивно — так что могут существовать фантазии внутри фантазий, фантазии, вложенные друг в друга три раза, и так далее. Это означает, что для этого правила существуют различные уровни реальности, так же как и во вставленных друг в друга рассказах или фильмах. Когда вы выталкиваетесь из фильма, вставленного внутрь другого фильма, на мгновение вам кажется, что вы достигли реального мира, хотя вас все еще отделяет от него один уровень. Точно так же, когда вы выталкиваетесь из фантазии внутри фантазии, вы находитесь в «более реальном», чем предыдущий, мире, хотя он и отстоит на один уровень от настоящего.
Читать дальшеИнтервал:
Закладка: