Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Тут можно читать онлайн Питер Эткинз - Десять великих идей науки. Как устроен наш мир. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Десять великих идей науки. Как устроен наш мир.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    978-5-17-051198-3, 978-5-17-050272-1, 978-5-271-19820-5, 978-5-271-19821-2
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Питер Эткинз - Десять великих идей науки. Как устроен наш мир. краткое содержание

Десять великих идей науки. Как устроен наш мир. - описание и краткое содержание, автор Питер Эткинз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. - читать онлайн бесплатно полную версию (весь текст целиком)

Десять великих идей науки. Как устроен наш мир. - читать книгу онлайн бесплатно, автор Питер Эткинз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В это время (в самом конце девятнадцатого века) случилось великое замешательство относительно того, как могли быть организованы электроны. Кое-кто подозревал, что один атом может состоять из тысяч электронов. Проблема осложнялась отсутствием какой-либо информации о существовании частиц с положительным зарядом, компенсирующим отрицательный электрический заряд электронов. Эту проблему отправила на покой работа новозеландца Эрнеста Резерфорда (лорд Резерфорд Нельсон, 1871-1937), который, находясь в Манчестере, наткнулся в 1910 г. на существование ядра , мельчайшего пятнышка положительно заряженного вещества, лежащего в центре атома, которое, будучи много меньше самого атома, ответственно фактически за всю его массу.

Здесь будет уместно дать представление о размерах и массах различных объектов, которые к этому времени появились на сцене. Типичный атом имеет диаметр около 3 миллиардных метра (3×10 − 9м, 3 нанометра, 3 нм). Так, миллион таких атомов, выложенный в ряд, протянется на 3 мм в длину. Теперь вы, может быть, получили возможность вообразить размер этих атомов. Легче представить себе то же тире увеличенным примерно до длины 3 километра, тогда каждый атом занял бы 3 миллиметра, как икринка рыбки «морской воробей».

Как вы, вероятно, догадываетесь, атомы являются довольно большими: им приходится быть такими, потому что в них много чего набито. Большинство людей думает, что атомы очень маленькие, но это лишь потому, что мы сами очень большие: нам приходится быть такими, потому что в нас много чего набито. Когда вы начинаете думать, что атомы большие, они становятся гораздо менее устрашающими. Было бы полезно в воображении надувать атом до тех пор, пока он не достигнет примерно метра в поперечнике.

Ядро атома тоже велико, поскольку в него тоже набито много вещей. Большинство людей думает, что оно очень, очень маленькое; но это не очень хорошие мысли, потому что такие мысли мешают уму вообразить, на что оно похоже. Некоторые ученые могли бы подумать, что такая помеха очень хорошая вещь, поскольку перенесение макроскопических идей на сущности столь малые, как атомы, не говоря уж о ядре, чревато опасностью, ибо знакомые понятия просто не приложимы к столь малым объектам (как мы с лихвой убедимся в главе 7, посвященной квантовой теории). Пусть так, но давайте по крайней мере попробуем вообразить себе диаметр ядра. Эксперименты показывают, что диаметр ядра составляет примерно одну десятитысячную диаметра атома. Поэтому, если мы подумаем об атоме, как о шаре примерно с метровым диаметром, его ядро будет пятнышком с диаметром лишь в одну десятую миллиметра. Поэтому для таких увесистых творений, как мы, ядро действительно очень мало; даже для воспринимающего существа размером с атом оно казалось бы довольно маленьким, хотя и различимым. Но для физиков-ядерщиков, которым необходимо понимать устройство ядер, оно довольно большое.

Как мы отметили, ядро является большим, потому что в него так много набито. В нем располагается положительный заряд атома, который компенсирует отрицательный заряд окружающих его электронов. Здесь также располагается почти вся масса атома, так как только около 0,1 процента его общей массы находится в электронах. Когда вы поднимаете тяжелый объект, вы в действительности поднимаете ядра. Если бы атомы вашего тела могли бы лишиться своих ядер, вы весили бы всего около 20 грамм. Другая, менее известная черта ядер состоит в том, что многие из них вращаются вокруг своей оси, хотя некоторые и не вращаются. Ядра водорода и азота вращаются, ядра углерода и кислорода нет. Вращение ядра не может быть изменено, это, подобно электрическому заряду, внутреннее свойство, и каждому ядру водорода суждено вращаться вечно с одной и той же неизменной скоростью.

В начале двадцатого века стало ясно, что электрон был не первой субатомной частицей, которая была открыта. Самая первая была известна, но не опознавалась в этом качестве, уже более века. Ядро атома водорода, простейшего из всех атомов, состоит из единственной субатомной частицы, протона . Эта частица является сущностью, ответственной за свойства кислот, и когда вы ощущаете кислый вкус лимонного сока, на самом деле ваш язык щекочут протоны. К сожалению, мы не можем здесь исследовать это явление или выяснять, почему язык является хорошим детектором по крайней мере для элементарной частицы одного типа. Протон представляет собой тяжелую частицу с положительным зарядом, равным и противоположным заряду электрона, и с массой примерно в тысячу раз большей массы электрона.

Атом водорода состоит из одного протона и присоединенного к нему электрона: положительный заряд ядра компенсируется отрицательным зарядом электрона. Следующий простейший элемент, гелий, имеет ядро, построенное из двух протонов, поэтому у него два присоединенных электрона. Число протонов в ядре атома называется атомным номером элемента, так что атомный номер водорода равен 1, атомный номер гелия равен 2, и так далее. Из того факта, что атом электрически нейтрален, а такими являются все атомы, следует, что число присутствующих в нем электронов равно атомному числу, поскольку полный положительный заряд ядра компенсируется полным отрицательным зарядом присоединенных электронов.

Осознание того, что ядру элемента можно приписать номер и что этот номер можно интерпретировать в терминах состава ядра, означает, что можно наконец провести перекличку элементов. Теперь пропущенный элемент, можно идентифицировать, узнав, был ли обнаружен элемент именно с таким атомным номером, а размышления о том, существует ли какой-нибудь элемент между двумя другими, можно прекратить, если их атомные номера являются соседними. Атомные номера стало возможно определять благодаря технике, разработанной Генри Моусли (1887-1915) незадолго до его призыва на военную службу для того лишь, чтобы под Галлиполи его настигла пуля снайпера. Как написал Уилфред Оуэн перед встречей со своей собственной пулей однажды вечером на исходе той же войны:

Отвага была моей, и с ней тайна,
Мудрость моею была, и с нею власть.

Это и была власть, основанная на мудрости, сорвавшая покров тайны, и теперь мы знаем весь список элементов, знаем о ядре и числе электронов, присутствующих в каждом атоме.

Точное расположение электронов вокруг ядра все еще оставалось проблемой. На этом этапе обсуждения важно понять то, что атом представляет собой почти полностью пустое пространство. Вся его масса, как мы видели, сосредоточена в мельчайшем центральном ядре, а окружающее ядро пространство, вплоть до расстояния, составляющего примерно 10 тысяч диаметров ядра, занято горстью электронов — например, шестью, в случае углерода. Ваше тело представляет собой это почти пустое пространство, хотя, так или иначе, вы кажетесь материальным. Вы являетесь пустотой в реальном, а не ироническом смысле, думаете почти пустыми мозгами, одеваетесь в пустоту, сидите на пустоте и поддерживаетесь ею. Чтобы вообразить пустоту атома, представьте, что вы стоите на ядре размером с Землю, глядя в ясное звездное ночное небо. Пустота пространства, которое вы видите вокруг себя, не будет отличаться от пустоты атома внутри вас.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Питер Эткинз читать все книги автора по порядку

Питер Эткинз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Десять великих идей науки. Как устроен наш мир. отзывы


Отзывы читателей о книге Десять великих идей науки. Как устроен наш мир., автор: Питер Эткинз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x