Морис Клайн - Математика. Утрата определенности.

Тут можно читать онлайн Морис Клайн - Математика. Утрата определенности. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Мир, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика. Утрата определенности.
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Морис Клайн - Математика. Утрата определенности. краткое содержание

Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. - читать онлайн бесплатно полную версию (весь текст целиком)

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И тем не менее десятилетия спустя, когда математика значительно расширила свои границы, многие ученые продолжали использовать аксиому выбора. Не утихали и споры по поводу того, можно ли считать аксиому выбора и доказываемые с ее помощью теоремы законной, вполне приемлемой математикой. {104}Аксиома выбора стала предметом активного обсуждения и уступала в этом отношении лишь аксиоме Евклида о параллельных. По замечанию Лебега, оппонентам не оставалось ничего другого, как поносить друг друга, ибо прийти к соглашению они не могли. Сам Лебег, несмотря на отрицательное и скептическое отношение к аксиоме выбора, все же пользовался ею, по его собственному выражению, «дерзко и осторожно», полагая, что будущее покажет, кто прав.

Но в первые же годы XX в. математиков стала беспокоить еще одна проблема. Сначала она не представлялась достаточно фундаментальной, но по мере распространения канторовской теории трансфинитных кардинальных и ординальных чисел становилась все более острой и настоятельно требовала своего решения.

В своих последних работах Кантор построил теорию трансфинитных кардинальных чисел на основе теории ординальных чисел. Например, кардинальное число множества всех возможных конечных множеств (точнее, множество всех конечных ординальных чисел) равно N 0. Кардинальное число всех возможных множеств ординальных чисел, содержащих лишь считанное число ( N 0) элементов, равно N 1 . Продолжая эту последовательность, Кантор получал все большие кардинальные числа, которые обозначил N 0, N 1, N 2, …. Кроме того, каждое очередное кардинальное число непосредственно следовало за предыдущим (было ближайшим к предыдущему кардинальным числом). Но в самом начале своих работ по трансфинитным числам Кантор показал, что множество всех вещественных чисел насчитывает 2 N0членов (эту величину принято кратко обозначать c ) и что 2 N0больше, чем N 0. Вопрос, который тогда же поставил Кантор, заключался в следующем: с каким членом последовательности алефов совпадает c ? Так как кардинальное число N 1следует непосредственно за N 0, кардинальное число c больше или равно N 1. Кантор высказал предположение, что c = N 1. Это предположение, впервые сформулированное в 1884 г. и опубликованное в том же году, получило название гипотезы континуума . {105}Эта гипотеза допускает также другую, несколько более простую формулировку: не существует трансфинитного числа, заключенного между Nc (кардинальное число любого бесконечного подмножества множества вещественных чисел либо равно N 0, либо равно с ). {106}В первые десятилетия XX в. вокруг гипотезы континуума развернулась бурная дискуссия, но проблема так и не была решена. Помимо того что гипотеза континуума дала возможность доказать новые теоремы, она приобрела особое значение, так как позволила глубже понять бесконечные множества, взаимно-однозначное соответствие и аксиому выбора и тем самым способствовала лучшему обоснованию теории множеств.

Итак, в начале XX в. перед математиками встало несколько трудных проблем. Требовалось устранить уже обнаруженные противоречия. Но еще более важным представлялось доказать непротиворечивость всей математики, ибо без этого нельзя было гарантировать, что в будущем не возникнут новые противоречия. Все эти проблемы имели решающее значение для судеб математики. Многие ученые продолжали считать неприемлемой аксиому выбора и ставили под сомнение доказанные на ее основе теоремы. «Нельзя ли доказать те же теоремы, исходя из более приемлемой аксиомы, и полностью отказаться от аксиомы выбора?» — этот вопрос беспокоил умы. Необходимо было также доказать или опровергнуть гипотезу континуума, важность которой по мере развития математики становилась все более очевидной.

Проблемы, с которыми столкнулись математики в начале XX в., были весьма серьезными, однако при других обстоятельствах они вряд ли вызвали бы столь сильные потрясения. Правда, противоречия в любом случае пришлось бы разрешать, но выявленные к началу XX в. противоречия относились к теории множеств — новому разделу математики, и математиков не оставляла надежда, что в свое время его удастся строго обосновать. Что же касается опасений обнаружить в классической математике новые противоречия, возможно связанные с использованием непредикативных определений, то к началу XX в. проблему непротиворечивости удалось свести к проблеме непротиворечивости арифметики, а то, что арифметика непротиворечива, ни у кого не вызывало сомнений. Вещественные числа находились в обращении более пяти тысяч лет, и относительно их было доказано огромное число теорем; при этом никаких противоречий никогда обнаружено не было. То обстоятельство, что какая-то аксиома, в данном случае аксиома выбора, использовалась неявно и что ее продолжали применять, подавляющее большинство математиков не беспокоило. Движение за аксиоматизацию, развернувшееся в конце XIX в., обнаружило, что многие аксиомы использовались неявно. Гипотеза континуума была в то время не более чем деталью теории Кантора, а некоторые математики целиком отвергали канторовскую теорию множеств. Математикам приходилось сталкиваться и с гораздо более серьезными трудностями, но они никогда не теряли присутствия духа. Например, в XVIII в., полностью сознавая принципиальный характер трудностей, возникших при попытках обосновать математический анализ, математики тем не менее продолжали создавать на основе дифференциального и интегрального исчисления новые обширные разделы математики и лишь впоследствии подвели под свои построения прочный фундамент, в основе которого лежало понятие числа.

Проблемы теории множеств можно было бы сравнить с запалом, который приводит к воспламенению заряда, вызывающего взрыв бомбы. Некоторые все еще верили, что математика представляет собой свод незыблемых истин. Они надеялись доказать это, и Фреге предпринял попытку осуществить подобные намерения. Кроме того, возражения против аксиомы выбора были вызваны не только тем, что утверждает сама аксиома. Математики, в частности Кантор, вводили все новые абстрактные понятия, обладавшие, по их утверждениям, той же степенью достоверности, какой обладает, например, понятие треугольника. Другие отвергали абстрактные понятия, считая их далекими от реальности и потому неспособными нести сколько-нибудь полезную нагрузку. Дискуссия по поводу теории множеств Кантора, аксиомы выбора и аналогичных понятий свелась к основному вопросу: в каком смысле можно утверждать, что математические понятия существуют?Должны ли они соответствовать реальным физическим объектам, являясь их идеализацией? Эту проблему рассматривал еще Аристотель. Он, как и большинство греческих мыслителей, считал, что математические понятия непременно должны иметь реальные прототипы. Именно из-за отсутствия физических реализаций Аристотель отвергал и существование бесконечного множества как «готовой» совокупности элементов и правильный семиугольник, который не удавалось построить циркулем и линейкой, что заставляло античных математиков считать его «непостроимым», т.е. в определенном смысле «не существующим». С другой стороны, последователи Платона — а Кантор был одним из них — полагали, что идеи существуют в некоем объективном «мире идей» и не зависят от человека. Человек лишь открывает эти идеи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика. Утрата определенности. отзывы


Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x