Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Тут можно читать онлайн Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Астрель: CORPUS, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Жанр:
  • Издательство:
    Астрель: CORPUS
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг:
    4.38/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - описание и краткое содержание, автор Джон Дербишир, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать онлайн бесплатно ознакомительный отрывок

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джон Дербишир
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я надеюсь, что у читателя в итоге сложится впечатление по крайней мере насчет общей логической канвы тех шагов, которым следовал Риман. Но даже и это не удастся без небольшой толики анализа, существенные моменты которого уже изложены в главе 7.vi-vii. Несколько следующих разделов могут показаться вам сложными. Но наградой будет результат столь же мощный, сколь и прекрасный, из которого вытекает все — сама Гипотеза, ее значение и ее связь с распределением простых чисел.

II.

Для начала выскажу нечто противоречащее тому, что было сказано в главе 3.iv. Ну, вроде как противоречащее. Там мы говорили, что не слишком интересно рисовать график функции π(N) , которая подсчитывает для нас простые числа. В том месте книги так и было. А теперь это не так.

Однако сначала кое-что подкорректируем. Вместо того чтобы писать π(N) , что на глаз математика выглядит как «число простых чисел, не превышающих натурального числа N », будем писать π(x) , что должно означать «число простых чисел, не превышающих вещественного числа x ». Ничего особенного мы не сделали. Разумеется, число простых чисел, не превышающих 37,51904283, есть просто число простых чисел, не превышающих 37 (и равно двенадцати: это 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37). Но нам предстоит познакомиться с некоторым объемом дифференциального и интегрального исчисления, и поэтому желательно находиться в царстве всех, а не одних только целых чисел.

И еще одна корректировка. При постепенном приближении к аргументу x в пределах некоторого интервала значений функция π(x) внезапно совершает прыжки. Пусть, например, x постепенно переходит от числа 10 к числу 12. Число простых чисел, не превышающих 10, равно 4 (это 2, 3, 5 и 7), так что значение функции равно 4, когда x = 10 и, равным образом, разумеется, когда x = 10,1, 10,2, 10,3 и т.д. Но при аргументе 11 это значение внезапно совершает прыжок к 5; и для 11,1, 11,2, 11,3, … оно твердо стоит на 5. Математики называют такое «ступенчатой функцией». И здесь нам потребуется корректировка, которую используют довольно часто, когда имеют дело со ступенчатыми функциями. Ровно в той точке, где π(x) совершает прыжок, присвоим ей значение, лежащее посередине между значениями, от которого и до которого она прыгает. Так, при аргументе 10,9, или 10,99, или 10,999999 функция имеет значение 4; при аргументе 11,1, или 11,01, или 11,000001 функция имеет значение 5; но при аргументе 11 это будет 4,5. Сожалею, если это представляется вам немного необычным, но это важно для наших целей. Если мы так сделаем, то все рассуждения из этой главы и из главы 21 будут иметь силу; а если нет, то они не будут работать.

Теперь можно, наконец, продемонстрировать график функции π(x) (рис. 19.1). К ступенчатым функциям не сразу привыкаешь, но с математической точки зрения они представляют собой совершенно нормальное явление. Область определения у нас сейчас — все неотрицательные числа. В этой области определения для каждого аргумента имеется единственное значение нашей функции. Дайте мне аргумент, и я скажу вам значение. В математике бывают функции и покруче.

Рисунок 191Функция считающая простые числа III Теперь введем другую - фото 126

Рисунок 19.1.Функция, считающая простые числа.

III.

Теперь введем другую функцию — также ступенчатую, но при этом слегка более хитрую, чем π(x) . В статье 1859 года Риман называет ее просто «функция f », но мы вслед за Хэролдом Эдвардсом будем называть ее «функцией J ». Со времен Римана математики привыкли использовать f для обозначения функции вообще: «Пусть f — произвольная функция…» — так что они могут слегка напрячься, увидев f в роли некоторой конкретной функции.

Итак, определим функцию J. Для любого неотрицательного числа x значение функции J равно

J(x) = π(x) + 1/ 2 π(x) + 1/ 3 π( 3√x ) + 1/ 4 π( 4√x ) + 1/ 5 π( 5√x ) + …. (19.1)

Здесь « π » обозначает функцию числа простых чисел именно в том виде, как выше мы ее определили для любого вещественного числа x .

Заметим, что приведенная сумма — не бесконечная. Чтобы убедиться в этом, возьмем любое фиксированное число x , скажем, x = 100. Квадратный корень из 100 равен 10; кубический корень равен 4,641588…; корень четвертой степени равен 3,162277…; корень пятой степени 2,511886…; корень шестой степени 2,154434…; корень седьмой степени 1,930697…; корень восьмой степени 1,778279…; корень девятой степени 1,668100… и корень десятой степени равен 1,584893…. Можно было бы, конечно, вычислить и корни одиннадцатой, двенадцатой, тринадцатой степени и т.д., сколько вам заблагорассудится, но в этом нет необходимости, потому что функция числа простых чисел обладает таким очень приятным свойством: если x меньше 2, то π(x) равна нулю — просто потому, что нет никаких простых чисел, меньших 2! Таким образом, при вычислении корней из 100 можно было на самом деле остановиться после корня седьмой степени. Вот что мы в результате имеем:

J (100) = π (100) + 1/ 2 π (10) + 1/ 3 π (4,64…) + 1/ 4 π (3,16…) + 1/ 5 π (2,51…) + 1/ 6 π (2,15…) + 0 + 0 + …,

и если теперь сосчитать число простых, то это равно

J (100) = 25 + ( 1/ 2×4) + ( 1/ 3×2) + ( 1/ 4×2) + ( 1/ 5×1) + ( 1/ 6×1),

что дает 28 8/ 15или 28,53333…. При извлечении корней из любого числа рано или поздно значения падают ниже 2, и начиная с этого места все члены в выражении для функции J равны нулю. Поэтому для любого аргумента x значение функции J(x) можно получить, вычисляя конечную сумму — существенное улучшение по сравнению с некоторыми из функций, что нам встречались!

Как уже говорилось, функция J ступенчатая. На рисунке 19.2 показано, как она выглядит при аргументах до 10. Как видно, функция J совершает прыжок от одного значения к другому, остается на новом значении на некоторое время, потом совершает новый прыжок. Что это за прыжки? Какой закон за ними стоит?

Рисунок 192Функция Jx Вглядевшись очень внимательно в выражение 191 - фото 127

Рисунок 19.2.Функция J(x).

Вглядевшись очень внимательно в выражение (19.1), мы увидим следующую закономерность. Во-первых, когда x — простое число, функция J(x) совершает прыжок на высоту 1, потому что π(x) — число простых чисел, не превышающих x , — при этом увеличивается на 1. Во-вторых, когда x является точным квадратом простого числа (например, x = 9, что есть квадрат числа 3), J(x) совершает прыжок на одну вторую, потому что квадратный корень из x есть простое число, а значит, π(√x) возрастает на 1. В-третьих, когда x есть точный куб простого числа (например, x = 8, что есть куб числа 2), J(x) совершает прыжок на одну треть, потому что кубичный корень из x равен простому числу, а значит, π( 3√ x) возрастает на 1, и т.д.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джон Дербишир читать все книги автора по порядку

Джон Дербишир - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. отзывы


Отзывы читателей о книге Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике., автор: Джон Дербишир. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x