Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
- Название:Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0682-6; 978-5-9774-0727-4 (т.32)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление краткое содержание
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.
Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

То же самое хаотическое поведение! Диаграмма-паутина будет хаотической, а представленные на ней значения будут беспорядочно колебаться между 0 и 1.
Однако орбита и диаграмма-паутина точки х 0= 0,8 — не исключение: все остальные возможные орбиты и диаграммы будут выглядеть точно так же. И вновь мы наблюдаем эффект карточной колоды.
На этом сюрпризы не заканчиваются: два различных начальных условия, близких друг к другу, определяют орбиты, которые по прошествии определенного времени будут выглядеть совершенно по-разному. Примем k = 4. Если мы хотим изучить орбиту точки а= 0,900 и по ошибке введем значение Ь= 0,901 (например, при измерении мы допустили ошибку, равную одной тысячной), то увидим, что орбиты а и b вскоре будут значительно отличаться, хотя изначально они были близки друг к другу. Орбита точки а будет образована значениями {0,900; 0,360; 0,9216; 0,2890; 0,8219; 0,5854; 0,9708…}, орбита точки b— значениями {0,901; 0,3568; 0,9180; 0,3012; 0,8419; 0,5324; 0,9958…}. Иными словами, исходная разница в одну тысячную через несколько итераций будет иметь порядок нескольких сотых. Всего за семь итераций разница увеличится в 20 раз! По прошествии определенного времени реальная и прогнозная траектории уже не будут иметь ничего общего.
И вновь мы наблюдаем эффект бабочки.
Подведем итог: изменяя значения параметра kв логистическом отображении от k = 2 до k= 4, мы показали, как система постепенно приближается к хаотическому состоянию. А где же операции растяжения и складывания, которые порождают хаос? Прямо у нас перед глазами. Логистическая функция f( х) = kx(1 — х) «растягивает» числовой интервал между 0 и 1 вследствие умножения хна k. Затем этот интервал «складывается пополам» в результате умножения kx на (1 — х) — число, меньшее единицы. Таким образом, числовой интервал растягивается и складывается, подобно подкове.
Хотя сегодня в математике не существует четкого определения детерминированного хаоса, он рассматривается как совокупность эффекта бабочки и эффекта карточной колоды, которые мы наблюдали и в сдвиге Бернулли, и в логистическом отображении Мэя.
От какого класса динамических систем стоит ожидать хаотического поведения?
Как вы уже знаете, хаос нужно искать среди нелинейных систем — только в них действие совокупности причин может не равняться совокупному действию этих причин по отдельности и приводить к совершенно неожиданным последствиям. Также (об этом мы не упоминали) нужно искать среди неинтегрируемых систем. Система называется интегрируемой, если ее траектории или решения можно явно выразить при помощи известных функций. Интегрируемые системы (линейные и нелинейные) предсказуемы, так как известна формула, позволяющая вычислить орбиту любой точки в любой момент времени. В неинтегрируемых системах, напротив, решение нельзя представить в виде формулы, поэтому для них нельзя составить прогноз на бесконечно большой период времени. Кроме того, если мы рассмотрим такие си¬стемы с точки зрения топологии, то увидим, что траектории будут тесно сплетаться между собой.
Если мы сведем две рассмотренные выше категории воедино, то увидим, что нелинейные и неинтегрируемые системы обладают беспорядочным, непредсказуемым поведением, указывающим на присутствие хаоса. Следует заметить: даже тогда, когда хаос требует нелинейности (чтобы небольшие изменения начальных условий могли вызывать значительные изменения) и неинтегрируемости (чтобы мы не могли делать прогнозы в долгосрочном периоде), нелинейная и неинтегрируемая динамика необязательно будет хаотической. Существуют нелинейные и неинтегрируемые системы, демонстрирующие равномерное и предсказуемое поведение. Математики говорят, что эти две характеристики — нелинейность и неинтегрируемость — являются необходимыми, но не достаточными.
С другой стороны, среди нелинейных и неинтегрируемых систем выделяют два подвида: гамильтоновы системы, сохраняющие энергию, и диссипативные, которые не сохраняют энергию. Этим двум видам систем соответствуют две разновидности детерминированного хаоса, известные сегодня.
Гамильтонов хаос наблюдается в системах, сохраняющих энергию, например в системе из трех тел, изученной Пуанкаре, в звездной системе, рассмотренной Эно и Хайлсом, в моделях бильярда, описанных Адамаром и Синаем. Как мы рассказали, это хаотическое поведение возникает в силу бесконечного числа пересечений сепаратрис седловой точки, в результате которого образуется запутанная сеть траекторий. Хотя такие системы обладают очень сложной динамикой, в них отсутствуют странные аттракторы. Существует знаменитая теорема Лиувилля, согласно которой сохранение энергии препятствует возникновению аттракторов. В самом деле аттракторы — это диссипативные структуры, в которых энергия рассеивается по мере приближения системы к аттрактору.
Негамильтонов хаос, напротив, наблюдается в системах, не сохраняющих энергию, к примеру, в системе Лоренца. Так как эти системы не сохраняют энергию, в них присутствуют аттракторы и возникают наиболее известные хаотические объекты — странные аттракторы, представляющие собой промежуточное звено между теорией хаоса и фрактальной геометрией.
Странный аттрактор — это аттрактор хаотической системы, которому свойственна фрактальная геометрия. Фрактал — это геометрический объект неправильной формы с бесконечным множеством деталей, обладающий самоподобием, и, скорее всего, имеющий дробную размерность. Странные аттракторы — сложные структуры, которые при последовательном увеличении демонстрируют самоподобие, свойственное фракталам: в них вновь и вновь проявляется одна и так же структура. Кроме того, многие из них имеют дробную размерность. Иными словами, если мы находимся на плоскости, то размерность нашего фрактального аттрактора будет больше 1, но меньше 2 и составит, к примеру, 1,5: аттрактор будет занимать больше пространства, чем кривая, но меньше, чем плоскость. Если мы находимся в пространстве, размерность фрактального аттрактора будет больше 2, но меньше 3 и составит, к примеру, 2,25: аттрактор будет занимать больше пространства, чем плоскость, но меньше, чем объемное тело. Таков смысл дробной размерности. К примеру, размерность аттрактора Лоренца примерно равна 2,06. Любопытно, что с момента открытия аттрактора Лоренца считалось, что он имеет «странный» характер (то есть является аттрактором хаотической системы и, возможно, имеет фрактальную геометрию), однако строгое математическое доказательство этого было найдено лишь в 2000 году. В 1998 году Стивен Смэйл предложил доказательство этого утверждения в качестве одной из открытых математических задач XXI столетия.
Читать дальшеИнтервал:
Закладка: