Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания

Тут можно читать онлайн Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    φ – Число Бога. Золотое сечение – формула мироздания
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-094497-2
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание

φ – Число Бога. Золотое сечение – формула мироздания - описание и краткое содержание, автор Марио Ливио, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…

Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

φ – Число Бога. Золотое сечение – формула мироздания - читать онлайн бесплатно ознакомительный отрывок

φ – Число Бога. Золотое сечение – формула мироздания - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Марио Ливио
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Даже если вы не слишком любите шоколад, то все равно понимаете, что этот пример демонстрирует простой математический закон, который можно применить и во многих других случаях. Однако математические свойства, формулы и законы (многие из которых не задерживаются у нас в памяти) – это далеко не все; существуют еще и особые числа, которые настолько вездесущи, что не устают нас изумлять. Самое прославленное из них – число π (пи), отношение длины окружности к ее диаметру. Значение π – 3,14159… – завораживало много поколений математиков. Хотя изначально число π было определено в геометрии, оно очень часто и неожиданно всплывает при вычислении вероятности. Знаменитый пример – так называемая игла Бюффона, названная в честь французского математика Жоржа-Луи Леклерка, графа де Бюффона (1707–1788), который поставил и решил эту вероятностную задачу в 1777 году. Леклерк задал следующий вопрос: представьте себе, что у вас на полу лежит большой лист бумаги, разлинованный параллельными линиями через равные заданные промежутки. На лист совершенно случайным образом бросают иглу, длина которой в точности равна промежутку между линиями. Какова вероятность, что игла упадет так, что пересечет одну из линий (то есть как на рис. 1)? Как ни странно, ответ, оказывается, 2/π. То есть в принципе возможно даже вычислить π, если повторить этот эксперимент много раз и понаблюдать, какая доля бросков заканчивается пересечением иглы с линией (правда, есть и другие методы вычисления π, не такие скучные). Словосочетание «число π» настолько вошло в обиходный лексикон, что кинорежиссер Даррен Аронофски в 1998 году даже снял психологический триллер под таким названием.

Рис 1 Менее знаменито другое число φ фи а между тем во многих - фото 1

Рис. 1

Менее знаменито другое число – φ (фи), а между тем, во многих отношениях оно даже интереснее. Вот, скажем, представьте себе, что я спрашиваю у вас, что общего у изумительного расположения лепестков алой розы, композиции знаменитой картины Сальвадора Дали «Тайная вечеря», чудесного рисунка спиральной раковины и статистики размножения кроликов? Трудно поверить, что у столь разнородных явлений действительно есть нечто общее – и это некое число или геометрическая пропорция, известная человечеству еще со времен античности, число, которому в XIX веке дали почетное называние «золотое число» или «золотое сечение». А в начале XVI века в Италии вышла книга, в которой это число называлось «Божественной пропорцией» – не более и не менее.

В повседневной жизни мы применяем слово «пропорция» для обозначения соотношения между частями целого по размеру или количеству – или когда хотим подчеркнуть гармоничные отношения между разными частями. В математике термин «пропорция» применяется для описания равенства следующего типа: девять относится к трем, как шесть к двум. Как мы увидим, золотое сечение дарит нам чарующее сочетание этих определений: хотя определяется оно строго математически, однако считается, что оно обладает свойствами, обеспечивающими приятную гармонию.

Первое четкое определение соотношения, которое впоследствии станет известно как золотое сечение, дал примерно в 300 году до н. э. Евклид Александрийский, основатель геометрии как формальной дедуктивной системы. К Евклиду и его фантастическим достижениям мы еще вернемся в главе 4, а пока позвольте отметить, что Евклид вызывает столь сильное восхищение, что поэтесса Эдна Сент-Винсент Миллей в 1923 году даже посвятила ему стихотворение под названием «На обнаженность красоты Евклид взглянул» ( пер. Л. Мальцевой ). Эдна даже сохранила свою школьную тетрадь по евклидовой геометрии. Евклид определил пропорцию, выведенную из простого деления линии (отрезка), по его выражению, «в крайнем и среднем отношении»: «Прямая линия называется рассеченною в крайнем и среднем отношении, когда как целая прямая к большему отрезку, так больший к меньшему» ( пер. Ф. Петрушевского ) (рис. 2).

Рис 2 Иначе говоря если мы посмотрим на рис 2 то увидим что отрезок АВ - фото 2

Рис. 2

Иначе говоря, если мы посмотрим на рис. 2, то увидим, что отрезок АВ определенно длиннее отрезка АС, в то же время АС длиннее СВ. Если отношение длины АС к длине СВ такое же, как отношение длины АВ к длине АС, значит, отрезок поделен «в крайнем и среднем отношении» – или в золотом сечении.

Кто бы мог подумать, что такое на первый взгляд невинное разделение отрезка, которое Евклид определил в чисто геометрических целях, окажет влияние на самые разные разделы знания – от положения листьев в ботанике до структуры галактик, состоящих из миллиардов звезд, от математики до искусства? Следовательно, золотое сечение – прекрасный пример того самого крайнего изумления и восторга, которые так высоко ценил великий физик Альберт Эйнштейн (1879–1955). Вот как он об этом писал: «Самое прекрасное, что только может выпасть нам на долю, – это тайна. Стремление разгадать ее стоит у колыбели подлинного искусства и подлинной науки. Тот, кто не знает этого чувства, утратил любопытство, не способен больше удивляться, – все равно что мертвый, все равно что задутая свеча».

Как мы еще увидим, когда проследим на страницах этой книги все необходимые вычисления, точное значение золотого сечения (то есть отношение АС к СВ на рис. 2) – бесконечное непериодическое число 1,6180339887…, а такие бесконечные неповторяющиеся числа интересовали людей со времен античности. Рассказывают, что когда греческий математик Гиппас из Метапонта в V веке до н. э. обнаружил, что золотое сечение – это и не целое число (подобное нашим добрым знакомым 1, 2, 5 и т. д.), и даже не отношение двух целых чисел (подобное дробям вроде 1/2, 2/3, 3/4, которые в совокупности называются рациональными числами ), это привело остальных пифагорейцев – то есть последователей знаменитого математика Пифагора – в полнейшее смятение. Предметом поклонения для пифагорейского мировоззрения (о котором мы подробно поговорим в главе 2) был arithmos – то есть имманентные качества целых чисел и их отношений и их предполагаемая роль в мироздании. А открытие, что существуют числа вроде золотого сечения, которые все тянутся и тянутся вечно и при этом в них нет никаких следов повторяемости, никакой закономерности, вызвало самый настоящий философский кризис. Легенда даже утверждает, будто пифагорейцы, совершенно потрясенные этим открытием колоссальной важности, устроили гекатомбу – пожертвовали сто быков, – хотя это вряд ли, учитывая, что пифагорейцы были строгими вегетарианцами. Тут я вынужден подчеркнуть, что большинство подобных историй основаны на недостоверном историческом материале. Так или иначе, мы даже приблизительно не знаем, когда именно были открыты числа, которые не являются ни целыми, ни дробями – так называемые иррациональные числа . Однако некоторые ученые датируют это открытие V веком до н. э., что, по крайней мере, соответствует только что рассказанным легендам. Очевидно одно: пифагорейцы в общем и целом считали, что существование подобных чисел так ужасно, что это, должно быть, своего рода ошибка мироздания, которую надо замолчать и держать в тайне.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Ливио читать все книги автора по порядку

Марио Ливио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




φ – Число Бога. Золотое сечение – формула мироздания отзывы


Отзывы читателей о книге φ – Число Бога. Золотое сечение – формула мироздания, автор: Марио Ливио. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x