Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Тут можно читать онлайн Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0635-2
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии краткое содержание

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - описание и краткое содержание, автор Жуан Гомес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать онлайн бесплатно полную версию (весь текст целиком)

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать книгу онлайн бесплатно, автор Жуан Гомес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если два муравья бегут по идеально ровной поверхности — евклидовой плоскости, — их пути не будут ни сходиться, ни расходиться, а будут оставаться на равном расстоянии друг от друга.

Если муравьи бегут по искривленной поверхности, их пути либо сходятся, либо расходятся, поскольку являются прямыми линиями на данной поверхности. Как показано на следующем рисунке, если поверхность имеет сферическую форму, муравьи в конечном итоге встретятся, потому что пространство, в котором они движутся, не просто кривое, но и вогнутое. Если поверхность гиперболическая, муравьи постепенно разойдутся, потому что это пространство выпуклое.

Чтобы оставаться на одинаковом расстоянии друг от друга в сферическом или - фото 52

Чтобы оставаться на одинаковом расстоянии друг от друга в сферическом или гиперболическом мире, его жителям придется постоянно корректировать свои пути, двигаться не по параллельным линиям и вообще отказаться от постулата о параллелях. Действительно, если такой мир существует, понятие параллельных линий там будет сильно отличаться от евклидова. Таким образом, важно понимать, что жители сферического или гиперболического мира даже не замечают, что их пути сходятся или расходятся, потому что приборы для измерения расстояния в их мире также другие. Они бы могли что-то заметить, если бы имели измерительное оборудование из евклидова мира.

Эйнштейн и Евклид

Неевклидовы геометрии, в частности, работы Римана, легли в основу теорий великого Альберта Эйнштейна(1879–1955) . Теория относительности использует математические понятия искривленного пространства и времени. Объединив обе концепции и опираясь на последние научные достижения того времени, Эйнштейн смог объяснить движение Солнца, планет и звезд. Понятия неевклидовой геометрии помогли ему найти математические уравнения, связывающие кривизну пространства-времени с массой и энергией.

Теория относительности

Теория относительности описывает Вселенную в терминах пространства-времени. В этой теории масса ( m) и энергия ( Е) связаны знаменитым уравнением Е= mс 2, где с обозначает скорость света (299792,458 километров в секунду). Теория относительности использует неевклидову геометрию в качестве математической модели, чтобы скорректировать ошибки классических теорий, описывающих природные явления. Такие модели, особенно теория Римана, помогают создать более полную, хотя и менее интуитивную картину мира. В теории относительности пространство и время являются физическими величинами, которые определяют расстояния между объектами и их движение относительно друг друга. Вселенная искривлена из-за наличия в ней огромных объектов (препятствий), которые заставляют прямые лучи света искривляться в пространстве в соответствии с геодезическими линиями.

* * *

ОТЕЦ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Альберт Эйнштейн родился в южно-германском городе Ульме. Он увлекался математикой с самого раннего возраста, но был также независимым вольнодумцем, не принимавшим укоренившуюся систему механического заучивания и зубрежки. Он переехал в Швейцарию, где получил диплом по физике, но, будучи молодым специалистом, работал клерком в бюро патентов в Берне: как еврей, он был лишен возможности получить место учителя. Несмотря на недостаток свободного времени, Эйнштейн продолжал учиться и заниматься исследованиями. В 1905 г. он опубликовал статьи по специальной теории относительности (обобщенной в 1916 г. до общей теории относительности), которая описывала понятия пространства, времени и скорости. Его работа обобщила классическую теорию Ньютона, введя новые представления о Вселенной на основе геометрии, которая не обязательно является евклидовой.

ПАРАДОКС БЛИЗНЕЦОВ Теория относительности требует неевклидова пространства - фото 53

ПАРАДОКС БЛИЗНЕЦОВ

Теория относительности требует неевклидова пространства. Основной причиной этого является открытие физических законов, которые утверждают, что ничто не может двигаться быстрее света.

Противоречивость пространства-времени наглядно иллюстрируется парадоксом близнецов. Представьте себе двух близнецов, один из которых улетает на космическом корабле со скоростью, близкой к скорости света, в то время как брат-близнец остается на Земле. Через несколько десятилетий близнец-путешественник возвращается. Его брат уже состарился, а путешественник так и остался молодым. Если космическая экспедиция отправилась к некоторой звезде со скоростью 240000 км/с, измеряемой с Земли, она достигнет пункта назначения через 50 лет. Однако, для экипажа космического корабля пройдет только 30 лет. Таким образом, после возвращения на Землю члены экипажа постареют на 60 лет, а каждый житель Земли станет старше на 100 лет.

Течение времени зависит от скорости наблюдателя. Пространство и время могут сокращаться и расширяться. Физика и геометрия определяют время и форму Вселенной. А в основе этих теорий лежит неевклидова геометрия.

* * *

Согласно Эйнштейну искривление пространства-времени обуславливает действие силы тяжести. Мы уже рассматривали пример плоской кровати, на которой тяжелый предмет вызвал искривление поверхности, и это искривление заставило предметы двигаться. Сила тяжести вызывается искажением ровной — и плоской — евклидовой Вселенной подобно тому, как тяжелый предмет в предыдущем примере продавливает покрывало на кровати. Пространство Вселенной искажается любым телом, и именно искривление пространства вызывает гравитационное притяжение.

Развитие неевклидовой геометрии открыло научному сообществу широкие возможности и поставило серьезную задачу: как узнать, является ли наше физическое пространство евклидовым? А если нет, то что может служить правильной геометрической моделью? Мы также не должны исключать возможность того, что пространство неоднородно, то есть существуют места с различной геометрической структурой: евклидовой, гиперболической или эллиптической. Но чтобы ответить на этот вопрос, нам нужны экспериментальные доказательства аксиомы Евклида или ее альтернатив.

Правильная геометрия

Из общей теории относительности следует интересный вывод: три геометрии — евклидова, гиперболическая и эллиптическая — совершенно равноправны. Теория относительности не исключает ни одну из этих возможностей. Все геометрии эквивалентны на относительно небольших расстояниях. Однако в случае астрономических расстояний или в таких областях современной физики, как теория относительности или распространение волн, неевклидовы геометрии дают более точное описание наблюдаемых явлений. Можно сказать, что в реальном мире работают все геометрии, но каждая из них имеет свою область применения. В разных исследованиях используются различные геометрии, более подходящие для конкретной области знаний. Ни одна из них не может претендовать на универсальность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жуан Гомес читать все книги автора по порядку

Жуан Гомес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии отзывы


Отзывы читателей о книге Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии, автор: Жуан Гомес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x