Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
- Название:Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- Город:Москва
- ISBN:978-5-9774-0635-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии краткое содержание
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Используя определения гиперболических синуса и косинуса, можно вывести и другие тригонометрические тождества, аналогичные известным тождествам из евклидовой геометрии. Например, мы можем проверить, что
ch(x + у) = chx· chy + shx· shy
аналогично традиционному выражению
cos(x + у) = cosx· cosy + sinx· siny
* * *
ОСНОВНОЕ ТОЖДЕСТВО ГИПЕРБОЛИЧЕСКОЙ ТРИГОНОМЕТРИИ
В евклидовой тригонометрии есть важное соотношение, называемое основным тригонометрическим тождеством, которое утверждает, что sin 2x + cos 2x = 1. Аналогом в гиперболической тригонометрии является следующее тождество:

ВОПРОС ТЕРМИНОЛОГИИ
В евклидовой терминологии синус и косинус называются круговыми функциями, поскольку они получаются из свойств круга. Рассмотрим окружность радиуса 1 с центром в начале системы координат. Уравнение этой окружности записывается как х 2+ у 2= 1. В этом простом уравнении мы можем сделать замену переменной, выразив переменные х и у через параметр t следующим образом: х = cost и у = sint. Здесь х и у удовлетворяют соотношению х 2+ у 2= 1. Такое уравнение называется параметрическим уравнением окружности.
Если вместо круга мы возьмем гиперболу, график функции х 2— у 2 = 1, то х = cht и у = sht удовлетворяют соотношению х 2 — у 2 = 1. Это уравнение называется «уравнением гиперболы».
Эти графики нам уже знакомы. Гипербола напоминает нам псевдосферу.

* * *
Что касается тангенсов, то можно показать, что

аналогично традиционному выражению

* * *
ЕВКЛИДОВА ТРИГОНОМЕТРИЯ
Тригонометрические тождества для суммы и разности выглядят следующим образом:
sin(x + у) = sinx· cosy + cosx· siny
cos(x + у) = cosx· cosy — sinx· siny
sin(x — y) = sinx· cosy — cosx· siny
cos(x — y ) = cosx· cosy + sinx· siny
* * *
РЕШЕНИЕ ГИПЕРБОЛИЧЕСКОГО ТРЕУГОЛЬНИКА ПО ЕГО УГЛАМ
Пусть в гиперболическом треугольнике даны внутренние углы А = 8°, В = 22° и С = 40°. Надо найти угловой дефект и длины сторон треугольника.
Угловой дефект считается по формуле 180° — (8° + 22° + 40°) = 110°. Для вычисления длин сторон мы воспользуемся гиперболической теоремой косинусов и получим

Это позволяет нам вычислить значение а . Для этого воспользуемся калькулятором и посчитаем функцию, обратную гиперболическому косинусу. Получим значение 2,642857562. Далее
что дает нам длину b = 3,628644458. И наконец

К счастью, современные калькуляторы имеют эти функции, и расчеты можно делать без утомительных промежуточных вычислений.
* * *
Аналогично можно проверить другие соотношения с помощью определений гиперболических синуса и косинуса.
По таблице традиционных тригонометрических тождеств можно составить аналогичные соотношения гиперболической геометрии. Просто надо от функций sin х и cos х перейти к гиперболическим функциям sh х и ch х соответственно, внося необходимые поправки, поскольку, как мы видели, разница состоит не только в обозначениях. Необходимо, например, изменить знак каждого члена, содержащего произведение двух гиперболических синусов.
Это простое правило позволяет получить соотношения для гиперболической тригонометрии из их евклидовых аналогов:
sh(x + у) = shx· chy + chx· shy
sh(x — у) = shx· chy — chx· shy
ch(x + y) = chx· chy + shx· shy
ch(x — y) = chx· chy — shx· shy
Как мы видели, гиперболическая тригонометрия похожа на традиционную, изучаемую в школе: обе имеют аналогичные соотношения. Приведенные ниже выражения содержат функции из обеих тригонометрий.
Рассмотрим треугольник с углами А, В и С и сторонами а, b и с , как показано на рисунке:

Для него справедливы следующие соотношения:
1) гиперболическая теорема косинусов для углов:
cos А = — cos В · cos С + sin В · sin С· ch а ;
2) гиперболическая теорема косинусов для сторон:
ch а = ch b · ch с — sh b · sh с · cos А ;
3) cos А = ch а · sin В ;
4) β /2 = α .
Приведенные выше выражения также справедливы, если мы заменим а, Ь, с и А, В, С на Ь, с, а и В, С, А соответственно в результате так называемой круговой перестановки. Таким образом мы можем составить полную таблицу соотношений между традиционной и гиперболической тригонометриями.
Глава 6
Эллиптическая геометрия
Имя немецкого математика Бернхарда Римана вписано большими буквами в историю математики. Эллиптическая геометрия — это удивительное детище его математического гения. Именно он представил прямые линии на таких поверхностях, как шар или мяч для регби, в виде окружностей.
Поверхность эллипсоида наиболее часто используется для визуализации и интерпретации эллиптической геометрии, отсюда и термин «эллиптическая геометрия».
Чтобы наиболее ясно продемонстрировать свойства этой геометрии, мы рассмотрим поверхность сферы, которая представляет собой самый простой, частный случай эллипсоида.
С помощью эллипсоида можно представить эту геометрию в очень интересной форме. Рассмотрим сначала более подробно поверхность эллипсоида.
Читать дальшеИнтервал:
Закладка: