Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления
- Название:Том 15. От абака к цифровой революции. Алгоритмы и вычисления
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- ISBN:978-5-9774-0710-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления краткое содержание
Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.
По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.
Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

ЗНАК π
Обозначение числа к греческой буквой пи ввел Леонард Эйлер в своей книге «Введение в анализ бесконечных», изданной в 1748 году. Он использовал первую букву греческого слова periphereia — «окружность». Эйлер ввел и другие популярные обозначения, которые используются в современной математике. Он стал обозначать основание натурального логарифма буквой е, квадратный корень из минус единицы — буквой i, сумму ряда — знаком Σ, конечную разность — знаком Δ.
Логика
В XVIII веке не было совершено значимых открытий в логике, однако нет никаких сомнений, что Кант, который хоть не внес прямого вклада в эту дисциплину, тем не менее способствовал ее дальнейшему развитию. По сути, на основе идей Канта позднее сформировался логический позитивизм, а также аналитическая философия. Позднее Фреге, Гильберт, Рассел и Гёдель внесли огромный вклад в логику.
Немецкий философ Иммануил Кант(1724–1804) заложил фундамент трех основных свойств современной логики: различие между понятием и объектом, первенство высказывания как основной единицы логического анализа и понятие логики как средства изучения структуры логических систем, а не только подтверждения отдельных умозаключений.

Иммануил Кант, преподававший логику и метафизику в университете родного Кёнигсберга, является одним из величайших мыслителей в истории философии. Его работы охватывают множество разнообразных дисциплин, в частности право и эстетику. Особую важность имеют его труды по логике.
* * *
РАЗЛИЧИЕ МЕЖДУ ПОНЯТИЕМ И ОБЪЕКТОМ
Готлоб Фреге(1848–1925) установил, что любое предложение или высказывание содержит выражение, обозначающее объект, и предикат, обозначающий понятие. Например, в высказывании «Сократ является философом», «Сократ» — это объект, понятие «являться философом» — предикат. Эта точка зрения существенно отличалась от принятой ранее, согласно которой высказывание рассматривалось как два термина, соединенных глаголом «являться». Новый взгляд на отношение «понятие — объект» стало основным для понимания теории множеств и отношения принадлежности элемента ко множеству.
Первым коммерчески успешным калькулятором был арифмометр, созданный французом Шарлем Ксавье Тома де Кольмаром(1785–1870) . Он успешно продавался не только во Франции, но и в других странах. Конкуренты не дремали, и через несколько лет было создано несколько альтернативных моделей. Наиболее заметными были калькулятор «Арифморель» еще одного француза Тимолеона Мореля (1842), калькулятор с зубчатыми колесами, созданный американцем Фрэнком Болдуином (1872), который независимо от него также был разработан шведом Вильгодтом Однером (1874), жившим в Санкт-Петербурге, а также круговой калькулятор англичанина Джозефа Эдмондсона (1885). Все эти машины использовались даже в первые годы XX века.

Устройство «Арифмореля» — калькулятора, созданного Тимолеоном Морелем.
Начиная с машины Мореля в калькуляторах помимо основных арифметических операций появилась возможность вычисления квадратных корней. Квадратные корни вычислялись на основании следующего разложения в ряд для функции х 2:
1 + 3 + 5 + … + (2 х — 1) = х 2.
Для данного числа n , которое является полным квадратом, квадратный корень из n можно получить последовательным вычитанием из него чисел 1, 3, 5, пока результат вычитания не станет равен нулю. Число выполненных операций вычитания будет равно квадратному корню исходного числа. Допустим, мы хотим вычислить квадратный корень из 100. Нужно последовательно вычесть из него 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. Так как мы вычли из 100 десять чисел, квадратный корень из 100 равен 10.
Если n не является полным квадратом, результатом последнего вычитания будет отрицательное число. Число выполненных операций вычитания будет приближенно равно истинному значению квадратного корня. Чтобы получить искомое значение с точностью до нескольких десятичных знаков, вышеуказанный процесс нужно повторить. При этом для каждого нового десятичного знака исходное число следует умножить на 100 в следующей степени. Например, умножим 2 на 100, чтобы вычислить квадратный корень из 200 и получить один знак после запятой. Имеем:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 =
= 196 < 200 < 225 =
= 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29.
Заметим, что в верхнем ряду складывается 14 слагаемых, в нижнем — 15.
Следовательно, квадратный корень из 200 находится между 14 и 15, корень из 2 — между 1,4 и 1,5.
В XIX веке были совершены открытия, которые подготовили почву для развития современных информационных технологий. В 1835 году американский физик Джозеф Генри, известный работами по электромагнетизму, изобрел электромеханическое реле.
Еще одно открытие — появление цифровой клавиатуры — предвосхитило основу интерфейса будущих компьютеров. До этого в калькуляторах использовались особые способы ввода множителей, что также требовало особой подготовки в области вычислений. Открытие клавиатуры сделало калькуляторы доступными для всех.
С массовым внедрением промышленных решений автоматические вычисления стали идти параллельным курсом с автоматизацией текстильной промышленности.
Француз Базиль Бушон уже в 1725 году создал перфорированную ленту для программирования ткацкого станка, на которой содержалась информация об узорах на ткани. Лента помещалась в станок, и постепенно получалась ткань с заданным узором. Несколько лет спустя, в 1728 году, помощник Бутона Жан-Батист Фалькон усовершенствовал его систему и заменил ленту перфорированными картами. В 1803 году Жозеф Мари Жаккар(1752–1834) создал знаменитый автоматический станок Жаккара на основе системы инженера Жака де Вокансона, в которой использовались карты и вращающийся барабан. Автоматический станок Вокансона, созданный в 1740 году, работал под управлением одного оператора. Система, в которой использовались перфокарты, наиболее эффективная на тот момент, непрерывно развивалась и позднее стала применяться в компьютерах XX века. Статистик Герман Холлерит(1860–1929) использовал перфокарты для кодирования результатов переписи населения США 1890 года. Холлерит был первым, кому удалось обработать информацию автоматически, поэтому он считается создателем информатики (это слово образовано слиянием слов «информация» и «автоматика»).
Читать дальшеИнтервал:
Закладка: