Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления
- Название:Том 15. От абака к цифровой революции. Алгоритмы и вычисления
- Автор:
- Жанр:
- Издательство:«Де Агостини»
- Год:2014
- ISBN:978-5-9774-0710-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления краткое содержание
Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.
По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.
Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

* * *
Они начали сотрудничать, когда Бэббидж попросил Аду Байрон перевести с французского текст Луиджи Менабреа об аналитической машине, написанный вскоре после выступления Бэббиджа в Турине, куда его пригласил математик Джованни Плана. Ада дополнила статью Менабреа примечаниями, которые по объему превысили исходный текст. В знаменитом примечании G помимо других важнейших открытий описывается алгоритм вычисления чисел Бернулли на языке программирования машины Бэббиджа с помощью двух циклов. Так было доказано, что машина Бэббиджа может иметь самое широкое применение. Это была первая в мире компьютерная программа. Ада также описала алгоритмы вычисления тригонометрических функций, в которых использовались переменные.
* * *
БУДУЩЕЕ, ОПИСАННОЕ В ПРИМЕЧАНИИ G
В примечании GАда Лавлейс выразила уверенность, что не только машина Бэббиджа, но и сам новый способ обработки информации произведут революцию в науке: «Аналитическая машина не претендует на то, чтобы дать начало чему-либо. Она способна выполнить всё, что мы сможем приказать ей. Она может произвести анализ, но не способна предугадать ни истинность высказываний, ни взаимосвязь между ними. Она способна помогать нам, делая доступнее то, что нам уже известно. Изначально эффект от ее использования будет получен преимущественно в этой области, однако весьма вероятно, что она окажет косвенное и взаимное влияние на саму науку. Распространение и сочетание истин и формул анализа, которое возможно будет выполнить при помощи машины, прольет свет на взаимосвязи и природу множества научных материй, которые станет возможно изучить более глубоко. Возможно, это косвенный и несколько спекулятивный результат этого открытия, но нет сомнений, что эта новая форма записи математических истин и работы с ними открывает новые перспективы, пусть и в теории. Во всех областях человеческой власти и познания помимо основной цели всегда сочетаются различные побочные воздействия».
* * *
Некоторые исследователи высказывают сомнения относительно того, кто был автором примечания G. Быть может, это был сам Бэббидж? Как бы то ни было, бесспорно, Ада обладала обширными знаниями математики и была знакома с принципом действия аналитической машины. Она настолько тесно сотрудничала с ее изобретателем, что ее вклад в разработку аналитической машины трудно переоценить.
Ада превосходно разбиралась в устройстве станка Жаккара, и некоторые авторы считают, что именно она подсказала Бэббиджу, что для ввода программ и данных в аналитическую машину можно использовать перфокарты. Ада сформулировала понятия инструкций, циклов и подпрограмм, которые известны каждому, кто знаком с языками программирования. За ее талант и знания математики Бэббидж называл ее «повелительницей чисел» ( the Enchantress of Numbers ).
Аналитическая машина также не была сконструирована полностью, на этот раз из-за возникших финансовых, политических и юридических проблем. Были разработаны лишь некоторые компоненты, в частности элементы арифметического устройства и системы печати. Ни память, ни программируемые компоненты созданы не были.
Компьютеры, сопоставимые по логическому устройству с этой машиной, были созданы лишь 100 лет спустя. Аналитическая машина была забыта всеми, за исключением некоторых изобретателей, на которых оказали влияние важнейшие понятия, сформулированные Бэббиджем в ходе работы над ней.
В 1903 году ирландский бухгалтер Перси Ладгейт спроектировал машину, схожую с машиной Бэббиджа, в которой на смену паровому двигателю пришел электромотор. Испанский инженер, математик и автор множества изобретений Леонардо Торрес Кеведо использовал идеи Бэббиджа при создании автоматической шахматной машины в 1911 году. Его машина была способна играть с человеком окончание шахматной партии с королем и ладьей против короля. Машина действовала не совсем точно, но всегда ставила мат за минимально возможное число ходов, неизменно одерживая победу в партии.
Позднее, в 1930-е годы, американский ученый Вэнивар Буш создал цифровой электрический компьютер и несколько машин для решения дифференциальных уравнений. Даже в первом электромеханическом компьютере Harvard Mark I, который был создан в период с 1939 по 1943 год американским инженером Говардом Хатауэем Эйкеном при поддержке IBM, 760000 зубчатых колес и 800 километров проводов были расположены по схеме, предложенной Бэббиджем.
Если бы аналитическая машина Бэббиджа была построена, в ней было бы 30 метров в длину, 10 метров в ширину и 4,5 метра в высоту. Сложение выполнялось бы за 3 секунды, умножение — от 2 до 4 минут, не считая времени, затраченного на ввод данных в арифметическое устройство — это заняло бы еще 2,5 секунды.
Чарльз Бэббидж также известен благодаря многим другим открытиям. Он взломал шифр Виженера (вариант шифра Цезаря), разработал приспособление, сбрасывающее посторонние предметы с путей перед локомотивом, а также сформулировал экономический «принцип Бэббиджа». Он также создал современную почтовую систему и был первым, кто указал, что ширина колец на спиле дерева зависит от погодных условий, что позволило изучить климат прошлых лет.
В области философии и богословия, которые он также не обошел стороной, ему не удалось достичь столь значимых успехов. Он был очень верующим человеком и в 1837 году опубликовал «Девятый трактат Бриджуотера» ( Ninth Bridgewater Treatise ), последовавший за восемью трактатами по богословию, издание которых было оплачено из наследства преподобного Фрэнсиса Генри, графа Бриджуотерского. Бэббидж пытался доказать существование Бога с позиций математики. Он писал, что Бог как высший законодатель создал законы или программы, согласно которым различные виды живых существ появлялись тогда, когда это было необходимо, и не вмешивался в земные дела напрямую. Он также доказывал возможность происхождения чудес с математической точки зрения, использовав методы теории вероятности. Его работы были написаны в то же время, что и труды Чарльза Дарвина(1809–1882) .
Логика и Джордж Буль
В 1847 году была опубликована книга «Математический анализ логики» ( Mathematical Analysis of Logic ) Джорджа Буля, в которой была представлена булева алгебра — попытка применить методы алгебры к логике первого порядка. В настоящее время булева алгебра в общем виде используется при проектировании электрических схем, однако изначально открытия Буля были признаны только узкими специалистами. Лишь в XX веке была понята их важность и возможность применения в информатике.
Читать дальшеИнтервал:
Закладка: