Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Тут можно читать онлайн Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том13. Абсолютная точность и другие иллюзии. Секреты статистики
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0706-9
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики краткое содержание

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - описание и краткое содержание, автор Пере Грима, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - читать онлайн бесплатно полную версию (весь текст целиком)

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - читать книгу онлайн бесплатно, автор Пере Грима
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Том13 Абсолютная точность и другие иллюзии Секреты статистики - изображение 2

Эта формула эквивалентна формуле расчета среднего для всех значений, так как если выборка содержит n элементов, среднее значение которых равно х ¯ , их сумма будет равна nх ¯ . Таким образом, числитель общего среднего арифметического равен сумме всех элементов выборки, а знаменатель — общему числу элементов выборки.

Рассмотрим пример. Если средний возраст сотрудников-мужчин в компании равен 36 годам, а средний возраст женщин — 32 годам, то каков средний возраст всех сотрудников? Ответ зависит от конкретной численности мужчин и женщин. Если половина сотрудников — мужчины, а половина — женщины, то средний возраст будет равняться 34 годам. Если 73 % сотрудников — мужчины, а 23 % — женщины, то средний возраст будет равен 35 годам. Заметим, что доля мужчин и женщин рассчитывается по следующим формулам: p 1 = n 1 ( n 1 + n 2 ) и р 2 = n 2 ( n 1 + n 2 ), поэтому первую формулу можно записать в следующем виде: x ¯t = р 1x ¯1 + р 2x ¯2 .

В некоторых случаях среднее арифметическое является не самой подходящей величиной. Если мы хотим обобщить данные о сроках доставки товара или о времени поезда в пути, среднее арифметическое не даст нам полезной информации. Может быть так, что по договору срок поставки должен составлять 10 дней, при этом в половине случаев товар доставляется за два дня, что становится неожиданностью для заказчика (на складе может не быть места для товара, к примеру), а в другой половине — за 18 (заказчик уже потерял надежду получить товар). Хотя в среднем сроки поставок соблюдаются идеально точно, означает ли это, что в компании все в порядке?

Аналогичная ситуация может произойти и в примере с поездом. Если в половине случаев мы будем приезжать на работу на полчаса раньше, это не компенсирует получасовых опозданий во второй половине случаев, особенно если в офис нельзя попасть до начала рабочего дня. В этих примерах наиболее информативной величиной будет процент опозданий или процент случаев, когда поезд опаздывает больше чем на определенное время.

Еще один недостаток среднего арифметического — сильная зависимость от крайних значений. Разумеется, странно, что число ног у большинства людей выше среднего, но это на самом деле так: у некоторых людей всего одна нога или нет ни одной (крайние значения), из-за чего среднее число ног у людей чуть меньше двух.

Медиана

Медиана — это значение, которое будет располагаться точно в центре, если мы упорядочим значения в порядке возрастания. Если даны значения 6, 7, 5, 2 и 9, их медиана равна 6 — именно это значение расположено в центре упорядоченного ряда из этих чисел. Если число элементов четно, медиана рассчитывается как среднее арифметическое двух центральных элементов. Свойства медианы частично компенсируют недостатки среднего арифметического. Кроме того, она меньше подвержена воздействию крайних значений. К примеру, среднее арифметическое вышеприведенных чисел равно 5,8, медиана — 6. Если при вводе этих чисел в компьютер мы вместо 9 случайно укажем 99, среднее арифметическое станет равно 23,8, а медиана будет по-прежнему равна 6.

Еще одним преимуществом медианы по сравнению со средним арифметическим является тот факт, что по определению ровно 50 % значений будут меньше медианы, оставшиеся 50 % — больше. Если, например, мы хотим узнать, входим ли мы в число наиболее высокооплачиваемых сотрудников, нужно сравнить нашу зарплату именно с медианой. Рассмотрим 10 сотрудников с зарплатами 0,8; 0,8; 0,9; 0,9; 1,0; 1,0; 1,1; 1,1; 1,2 и 10 тысяч евро. Все сотрудники, за исключением одного (90 % от общего числа), получают зарплату меньше средней, которая равна 1,88 тысяч евро. С медианой подобное невозможно: если наша зарплата больше медианы, мы гарантированно входим в 50 % наиболее высокооплачиваемых сотрудников.

Другой пример. Если для сдачи экзамена нужно набрать 5 баллов и более, а средняя оценка в группе равна 5, мы не знаем, сколько студентов сдали экзамен. Если экзамен сдавали 50 студентов, может случиться так, что 41 студент набрал 4 балла и не сдал экзамен, восемь студентов получили 10 баллов, еще один — 6 баллов. В результате средняя оценка равна 5, хотя распределение оценок в группе действительно немного необычно. Если медиана равна 5, то половина студентов в группе точно сдала экзамен.

Мода

Когда речь идет о показателях центра распределения, также всегда упоминается мода. Мода — это значение, которое встречается наиболее часто. В выборке 0, 2, 7, 2, 8, 2, 5, 4 мода равна 2. Ее имеет смысл использовать для качественных показателей. Так, например, если в выборке новорожденных чаще всего встречаются карие глаза, то мода равна карему цвету. Она не содержит какой-то другой информации. Использование моды в этом контексте обусловлено скорее традициями, чем реальной полезностью.

* * *

ФЛОРЕНС НАЙТИНГЕЙЛ

Летом 1853 года, разбив турецкую армаду, русский черноморский флот был готов захватить Стамбул и взять под контроль пролив Босфор, поставив под угрозу сообщение Великобритании с Индией и нанеся ущерб интересам Франции в Средиземном море. Великобритания объявила России войну, отправив войска на полуостров Крым, где к ним присоединились французская и турецкая армии. Так началась Крымская война, которая завершилась в 1856 году и унесла тысячи жизней.

Крымская война считается самой неудачной для британского военного командования. Также это первая война, зафиксированная на фотографиях и в отчетах репортеров. Эта деталь может показаться незначительной, но журналисты в своих статьях рассказывали об ужасающих условиях жизни солдат и бедствиях, вызванных некомпетентностью военного командования. В результате общество возмутилось, и британский военный министр был вынужден отправить на фронт сестер милосердия, во главе которых стояла увлеченная, умная и опытная Флоренс Найтингейл.

Прибыв на фронт, сестры обнаружили, что госпитали находятся в ужасном состоянии. Флоренс Найтингейл объяснила, что большинство смертей было вызвано не ранениями, а инфекционными заболеваниями. Она собирала и документально фиксировала данные, которые свидетельствовали о связи между переполненностью госпиталей и уровнем смертности, уделяя основное внимание санитарии, правильному питанию и уходу за ранеными.

В течение первых семи месяцев войны, до прибытия Флоренс Найтингейл, раненый британский солдат имел больше шансов выжить, если оставался на поле боя, а не поступал в военный госпиталь. В последние шесть месяцев войны благодаря изменениям в уходе за ранеными смертность снизилась с 40 до 2 %.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пере Грима читать все книги автора по порядку

Пере Грима - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том13. Абсолютная точность и другие иллюзии. Секреты статистики отзывы


Отзывы читателей о книге Том13. Абсолютная точность и другие иллюзии. Секреты статистики, автор: Пере Грима. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x