Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика

Тут можно читать онлайн Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 12. Числа-основа гармонии. Музыка и математика
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6
  • Рейтинг:
    4.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Хавьер Арбонес - Том 12. Числа-основа гармонии. Музыка и математика краткое содержание

Том 12. Числа-основа гармонии. Музыка и математика - описание и краткое содержание, автор Хавьер Арбонес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этой книги читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы? Может ли певец разбить стекло силой своего голоса?

Как сформировалась современная музыкальная нотация и каким правилам она подчиняется? При ответе на эти и многие другие вопросы не обойтись без математики.

Том 12. Числа-основа гармонии. Музыка и математика - читать онлайн бесплатно полную версию (весь текст целиком)

Том 12. Числа-основа гармонии. Музыка и математика - читать книгу онлайн бесплатно, автор Хавьер Арбонес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

фа <���— до —> соль —> ре —> ля —> ми —> си .

* * *

НАЗВАНИЯ НОТ

Греки дали названия нотам по первым буквам ионийского алфавита. Один и тот же звук, измененный на половину тона или сдвинутый на одну октаву, обозначался разными буквами. Например, нота фа обозначалась буквой альфа, бета обозначала фа-диез, гамма — фа-дубль-диез. Звуки пифагорейского строя располагались в порядке убывания, в современном музыкальном строе они расположены с точностью до наоборот.

Римляне также использовали буквы алфавита для обозначения звуков. Боэций, который в V веке н. э. создал пятитомный труд по теории музыки, рассматривал строй из пятнадцати нот, охватывавших две октавы. Каждую из этих нот Боэций обозначил своей буквой, не учитывая цикличность октав. На следующем этапе, разумеется, эта цикличность стала учитываться в названиях нот, и одни и те же ноты разных октав стали обозначаться одинаковыми буквами.

В так называемой английской (или немецкой) нотации семь нот обозначались заглавными латинскими буквами от Адо G, ноты следующей октавы — строчными буквами от а до g,ноты третьей октавы — удвоенными строчными буквами ( аа, bb, сс, dd, ее, ff, gg). Так свои названия получили семь звуков, соответствующие белым клавишам фортепиано. Остальные пять звуков, соответствующие черным клавишам, получили производные от основных звуков названия позднее, с появлением понятий «бемоль», «бекар» и «диез».

В XI веке тосканский монах Гвидо д'Ареццо(ок. 995 — ок. 1050) разработал набор мнемонических правил для чтения нот. Возможно, самым известным из них является так называемая гвидонова рука. В этом методе ноты условно располагаются в алфавитном порядке на пальцах руки. Гвидо д'Ареццо также дал названия всем нотам. Он обозначил каждый звук первым слогом в каждой строке очень известной в то время молитвы Иоанну Крестителю:

Utqueant laxis,

resonare fibris,

Mlra gestorum,

famuli tuorum,

Solve polluti,

Labii reatum,

Sancte lohannes.

Позднее слог ut заменился на do. Так появились названия нот, которые используются и сейчас.

Рисунок гвидоновой руки из средневековой рукописи Если продолжить - фото 9

Рисунок «гвидоновой руки» из средневековой рукописи.

* * *

Если продолжить цепочку квинт, получится 12 звуков так называемого хроматического строя, составляющие квинтовый круг:

где знаки бемоль и диез означают изменение на полутон ниже и выше - фото 10

где знаки бемоль ( и диез означают изменение на полутон ниже и выше соответственно После - фото 11) и диез ( #) означают изменение на полутон ниже и выше соответственно.

После того как мы получили 12 нот упорядочив квинты нетрудно вычислить - фото 12

После того как мы получили 12 нот, упорядочив квинты, нетрудно вычислить частоты всех нот, лежащих в пределах одной октавы, путем сдвига на одну или несколько октав.

Подсчеты

Определим частоту каждой ноты с помощью цепочки квинт и сдвига на одну или несколько октав, то есть путем деления и умножения частоты на 2. Напомним, что отношение между частотами звуков всегда будет принимать значение между 1 (соотношение частоты одного и того же звука) и 2 (отношение частот нот до соседних октав).

Сначала определим относительную частоту ноты соль, которая отстоит на одну квинту от ноты до :

соль = 3/2

Затем определим частоту ноты ре , которая отстоит на одну квинту от соль (необходимо умножить частоту на 3/2), но потребуется сдвиг на одну октаву ниже (умножить частоту на 1/2):

Расстояние между до и ре называется целым тоном Как и следовало ожидать один - фото 13

Расстояние между до и ре называется целым тоном. Как и следовало ожидать, один тон равен двум полутонам.

Затем определим относительную частоту ноты ля , отстоящей на одну квинту от ре :

Нота ми отстоит на одну квинту от ля но потребуется сдвиг на одну октаву - фото 14

Нота ми отстоит на одну квинту от ля , но потребуется сдвиг на одну октаву ниже:

Последние ноты строя си отстоящая на одну квинту от ми и фа для - фото 15

Последние ноты строя — си , отстоящая на одну квинту от ми , и фа , для получения которой необходим сдвиг на одну квинту ниже до с последующим смещением на одну октаву выше (потребуется умножить частоту на 2).

Приняв частоту до за 1, представим частоты всех нот в таблице:

Можно повторить эти же действия чтобы определить частоты бемолей - фото 16

Можно повторить эти же действия, чтобы определить частоты бемолей, соответствующих черным клавишам пианино.

Для этого нужно последовательно выполнять сдвиг на одну квинту ниже, начиная с ноты фа .

Пифагорейская комма На одну квинту выше ноты си находится фадиез который - фото 17

Пифагорейская комма

На одну квинту выше ноты си находится фа-диез , который должен совпадать с соль-бемоль . Но это не один и тот же звук: разница между фа-диез и соль-бемоль называется пифагорейской коммой. Аналогично, определив частоты фа-диез и ре-бемоль , мы увидим, что они отстоят друг от друга не на одну кварту, а на интервал, который отличается от квинты на одну пифагорейскую комму. Эта квинта, которая немного меньше настоящей, называется волчьей квинтой.

Построив квинтовый круг из 12 квинт, мы получим ноту, которая немного отличается от первоначальной и отстоит от нее на семь октав:

Это немного и есть пифагорейская комма Ее значение обозначим его ПК можно - фото 18

Это «немного» и есть пифагорейская комма. Ее значение (обозначим его ПК) можно вычислить, взяв за основу частоту f и сравнив цепочку из 12 квинт, начиная с f , с цепочкой из семи октав:

Отличие будет чуть больше 1 октавы или что равносильно почти четверть - фото 19

Отличие будет чуть больше 1 % октавы или, что равносильно, почти четверть полутона. Это отличие вызвано тем, что дробь, соответствующая квинте, несовместима с дробью, соответствующей октаве, что нетрудно показать. Для этого попробуем найти такие показатели степеней х и у , которые позволят связать эти две дроби:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хавьер Арбонес читать все книги автора по порядку

Хавьер Арбонес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 12. Числа-основа гармонии. Музыка и математика отзывы


Отзывы читателей о книге Том 12. Числа-основа гармонии. Музыка и математика, автор: Хавьер Арбонес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x