Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов

Тут можно читать онлайн Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 11. Карты метро и нейронные сети. Теория графов
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Клауди Альсина - Том 11. Карты метро и нейронные сети. Теория графов краткое содержание

Том 11. Карты метро и нейронные сети. Теория графов - описание и краткое содержание, автор Клауди Альсина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Наш мир полон не только букв и цифр, но и самых разных изображений. Это картины, фотографии, произведения искусства, многочисленные схемы… Вспомните схему вашей линии метро или автобусного маршрута — это всего лишь линия с точками, рядом с которыми подписаны названия остановок. Подобные схемы из точек и линий называются графами. Именно о них вы узнаете, прочитав эту книгу.

Том 11. Карты метро и нейронные сети. Теория графов - читать онлайн бесплатно полную версию (весь текст целиком)

Том 11. Карты метро и нейронные сети. Теория графов - читать книгу онлайн бесплатно, автор Клауди Альсина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Граф является планарным тогда и только тогда, когда он не содержит ни одного подграфа, гомеоморфного К 3,3 или К 5 ».

Чтобы определить, является ли граф планарным, нужно удалить все вершины степени 2 и проверить, не содержит ли полученный граф К 3,3 или К 5.

* * *

КАЗИМИР КУРАТОВСКИЙ (1896–1980)

Профессор Куратовский был одним из великих польских математиков, возглавлял группы исследователей и сотрудничал с крупнейшими математиками мира. Он занимался логикой, топологией, теорией множеств, а в 1930 году удивил весь мир знаменитой теоремой о планарных графах. Хотя определить планарность графа на практике сложно, теорема Куратовского имеет очень простую формулировку.

ПРИМЕНЕНИЕ В АРХИТЕКТУРЕ При работе над архитектурными проектами интерес - фото 23

ПРИМЕНЕНИЕ В АРХИТЕКТУРЕ

При работе над архитектурными проектами интерес представляет анализ графа доступности пространств. Если этот граф не является планарным, нужно будет построить несколько этажей и лестниц. Если же полученный граф является планарным, то допустимо расположение всех нужных помещений на одном этаже.

* * *

Деревья, за которыми виден лес

Дерево — это очень простой граф, все вершины которого соединены так, что отсутствуют циклы, как, например, на следующем рисунке:

В дереве можно проложить маршрут между любыми двумя вершинами Далее приведены - фото 24

В дереве можно проложить маршрут между любыми двумя вершинами.

Далее приведены все возможные деревья с числом вершин от 1 до 8.

Последовательность чисел обозначающих количество всех возможных деревьев для - фото 25

Последовательность чисел, обозначающих количество всех возможных деревьев для каждого числа вершин, выглядит так: 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159…

Если дерево имеет р вершин, то в нем всегда будет р — 1 ребер, но для каждого значения р можно изобразить р р -2разных деревьев (формула Кэли). Понятие дерева впервые ввел Кэли в 1857 году. Деревья образуют очень важный класс графов, так как в них все вершины соединены минимально возможным числом ребер. Благодаря этому деревья находят интересное применение в самых разных областях: при проектировании электрических цепей, телефонных сетей, при поиске маршрутов между населенными пунктами и так далее.

Следующая простая и красивая теорема дает характеристику деревьям, а также имеет крайне важное практическое значение:

«Граф G является деревом тогда и только тогда, когда между любыми двумя различными его вершинами u и v существует единственный путь. Это равносильно следующему утверждению: С является связным графом, если он имеет р вершин и р — 1 ребро».

Несмотря на простоту этой теоремы, число возможных деревьев по мере увеличения р возрастает очень быстро.

Причина этому такова. Пусть G — дерево. Даны две вершины G, u и v . Так как граф G является связным, то существует по меньшей мере один путь между u и v . Если бы между этими вершинами существовало два пути, С 1 и С 2 , то в графе G образовался бы цикл, что невозможно. Разумеется, если между двумя произвольными вершинами графа существует единственный путь, граф является связным и не содержит циклов.

* * *

ДЕРЕВЬЯ И ВЕРОЯТНОСТИ

При анализе вероятностей различных событий (например, в играх) возможные альтернативные исходы и соответствующие вероятности часто представляют в форме дерева, где вершины соответствуют возможным исходам, а ребра — значениям вероятностей возможных исходов. Соответствующие расчеты выполняются на основе дерева. На рисунке представлено дерево, соответствующее игре, в которой нужно бросить сначала монету, затем — кубик. В теории игр, которая широко применяется в экономике, подобные представления используют очень часто.

Для расчета вероятностей нужно четко представлять все возможные исходы - фото 26

Для расчета вероятностей нужно четко представлять все возможные исходы.

* * *

У. УИНГФИЛД И А. А. МАРКОВ : ТЕННИС И ТЕОРИЯ ГРАФОВ

Уолтер Уингфилд(1833–1912) запатентовал игру под названием теннис в феврале 1874 года. Андрей Андреевич Марков(1856–1922) занимался изучением последовательностей случайных событий, которые позднее стали называться цепями Маркова. Цепь Маркова представляет собой ориентированный граф, вершинам которого соответствуют состояния, а дугам — переходы из одного состояния в другое в зависимости от вероятности исходного события, но не всей последовательности предшествующих событий. Уингфилда и Маркова объединяет работа А. Л. Садовского и Л. Е. Садовского «Математика и спорт», в которой цепи Маркова используются для анализа теннисных партий. Так, на рисунке вероятности возможных исходов для каждого события соответственно равны 0,6 и 0,4.

Рассмотрим задачу которую можно решить с помощью деревьев Даны n - фото 27

* * *

Рассмотрим задачу, которую можно решить с помощью деревьев. Даны n городов A 1, А 2А n . Зная затраты на установление сообщения между каждой парой городов (стоимость строительства дорог, прокладки водо- и газопровода, линий электропередачи, телефонных линий), определите, как можно соединить города самым дешевым способом. Очевидно, что сеть «экономических связей» будет деревом, так как все города должны быть связаны друг с другом и не должно существовать циклов. Если бы в этой сети существовал цикл, можно было бы удалить одно из его ребер и все города по-прежнему были бы соединены между собой, но уже при меньших затратах.

Следовательно, дерево связей между n городами будет иметь n — 1 ребро. Соединим два города, для которых стоимость прокладки всех коммуникаций будет наименьшей. Затем соединим один из них с третьим городом, для которого стоимость коммуникаций будет минимальной, и так далее. Как называется множество различных графов, которые являются деревьями?

Наверное, вы уже догадались: такое множество называется лесом. Вопреки известной пословице, в теории графов за деревьями лес виден.

* * *

ГРАФЫ И ГЕНЕАЛОГИЧЕСКИЕ ДЕРЕВЬЯ

Родословную человека или семьи можно представить в четкой и упорядоченной форме с помощью графа, в вершинах которого размещаются фотографии, имена и годы жизни родственников, а ребра графа указывают на родственные отношения. Такое дерево может быть нисходящим и изображать всех потомков одной супружеской пары или восходящим, на котором будут представлены все предки конкретного человека.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Клауди Альсина читать все книги автора по порядку

Клауди Альсина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 11. Карты метро и нейронные сети. Теория графов отзывы


Отзывы читателей о книге Том 11. Карты метро и нейронные сети. Теория графов, автор: Клауди Альсина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x