Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
- Название:ВОЛШЕБНЫЙ ДВУРОГ
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1967
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание
«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.
Для среднего и старшего возраста.»
Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.
ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Что это за локон? — спросила Васька с разгоревшимися глазами. — А мне можно будет пойти к этим твоим знакомым?
—488—
— Ну конечно! — отвечал автор. — Они только того и дожидаются, чтобы ты к ним пришла! Поезжай на Ленинские горы, там увидишь огромное здание. Войди туда и поищи комнату с надписью «Приемная комиссия». На листке бумаги напиши: «Прошу принять меня на первый курс механико-математического факультета…» А когда сдашь приемные экзамены и поступишь на первый курс, то… не заметишь, как пройдут пять лет, и ты все это будешь знать назубок!
— То есть в университет?
— Вот именно! Ты там будешь не одна, ибо многие наши старательные читатели пойдут учиться в университеты и другие высшие учебные заведения — кто в Москве, а кто и в других городах, потому что на необъятных просторах нашей Родины есть теперь немало высших учебных заведений, куда стремится попасть наша жадная до знаний молодежь, чтобы в будущем быть полезными гражданами коммунистического общества.

—489—


Цена 1р. 22к.
Примечания
1
Очерк о Софье Ковалевской можно прочитать в книге «Люди русской науки». М., Физматгиз, 1961, стр. 178.
2
Вопрос о том, как надлежит в различных обстоятельствах разуметь и толковать слово «прямо», обсуждается весьма подробно в Схолии Четырнадцатой, так что ты уж, пожалуйста, не удивляйся этому вопросу.
3
Загляни, мой хороший читатель, в АЛ-II, XVI, XVII, XVIII, там все это рассказано очень подробно.
4
Однако, как на грех, при переписке Шэнкс пропустил один нуль, и эту его ошибку обнаружили только в 1948 году. Теперь с помощью электронно-счетных машин найдено уже несколько тысяч знаков числа π .
5
АЛ-II, XVI, XVII и XVIII, a в этой книжке — Схолия Девятнадцатая.
6
Загляни-ка в книжку А. А. Савелова «Плоские кривые» (М., 1966), там есть кое-что полезное о трисекции.
7
Лабиринты были широко известны в древности. На одной из стен засыпанного вулканическим пеплом Везувия города Помпеи нашли выцарапанный план лабиринта с надписью: «Здесь живет Минотавр».
8
Кто хочет узнать про Розамундину мышку подробнее, тот пусть возьмет книгу Н. Корбинского и В. Пекелиса «Быстрее мысли». М., «Молодая гвардия», 1959. А по части лабиринтов см. АЛ-I; III, IV, V, VI.
9
Есть очень хорошая книга известного польского математика Вацлава Серпинского «Что мы знаем и чего не знаем о простых числах». М., Физматгиз, 1963.
Тот, кто заинтересуется распределением простых чисел среди натурального ряда чисел, может узнать довольно интересные вещи по этому поводу в журнале «Знание — сила» (№ 3 за 1965 год, стр. 38-39, а также последняя страница обложки), где рассказывается о странной спирали из простых чисел, обнаруженной математиком С. Уламом. Эта углообразная спираль (чертится на клетчатой бумаге) обнаруживает ряд совершенно неожиданных правильностей по части разложения простых чисел в натуральном ряду. На этой необычной диаграмме не только самые простые числа, но и промежутки между ними располагаются в виде довольно длинных отрезков, образующих самые замысловатые узоры.
10
Есть книга по этим вопросам: М. М. Постников. Магические квадраты. М., «Наука», 1964.
11
АЛ-I, XI.
12
Если ты, читатель, захочешь познакомиться поближе с Бушмейстером, то вырезай и склеивай его из довольно плотной бумаги, потому что из тонкой бумаги он будет очень эффектно выкидывать свои петли, а разобраться в них будет труднее. Если хочешь, чтобы все тебе было ясно, то не поленись поступить так: при делении Бушмейстера на два раздели сперва (перед тем как склеивать) бумажку пополам вдоль прямой линии на две полоски при помощи карандаша с обеих сторон, затем выкрась левую полоску и красный цвет с одной стороны, а потом ту же полоску и с другой; когда ты теперь повернешь конец бумажки на 180°, чтобы склеить Бушмейстера, у тебя совпадут красная полоска с красной, а белая — с белой. Если ты вздумаешь делить Бушмейстера на три, то крась, начиная слева, первую полоску в красный цвет, среднюю — в синий, а последняя справа останется белой. Так же точно надо сделать с другой стороны, то есть красить в том же порядке, начиная опять слева. Какие ты выберешь краски и как их расположишь — это, конечно, дело твое; важно только, чтобы краски шли на обеих сторонах бумажной полоски в одном и том же порядке, начиная с какого-нибудь определенного края.
13
Если ты, любезнейший читатель, будешь делить Бушмейстера на пять частей, то раздели бумажку на пять полосок и, начиная слева, выкрась так: красная, белая, синяя, серая, зеленая. В этом случае бумажку лучше взять длиной 40 см, а шириной 5 см.
14
В это время кто-то сказал Илюше на ухо: «Достань себе книжку Г. Радемахера и О. Теплица «Числа и фигуры» и почитай там рассказ двадцать третий о периодических десятичных дробях. Он занимает всего восемнадцать страниц. Если тебе покажется мало, бери «Теорию чисел» И. В. Арнольда. Только там побольше восемнадцати страниц!»
Тут Илюша заметил, что кто-то с ним раскланялся и сел на какую-то длинную палку верхом (а на палке написано: «Ось большая эллиптическая») и со свистом улетел в неизвестность…
Между прочим, в «Архимедовом лете» имеется рассказ о сравнениях (AЛ-I, XI) и указания на систему вычетов, то есть остатков при делении на некоторое число. В данном случае возникает вопрос о степенных вычетах, или остатках при делении последовательных степеней числа 10 на знаменатель данной дроби.
15
По этому вопросу есть сравнительно доступные книги, например:
Л. А. Калужниц. «Что такое математическая логика». М., «Наука», 1964. В конце этой книжки есть список литературы. Тот, кто заинтересуется этим предметом, в книге Л. А. Калужнина может найти немало интересного.
16
Наш дорогой читатель хорошо сделает, если постарается раздобыть книжку Н. Я. Виленкина «Рассказы о множествах», М., «Наука», 1965. Книжечка небольшая (128 стр.), не очень легкая, но одолеть ее вполне возможно. Там рассмотрены те же примеры, что и здесь приводятся, но есть и еще более интересные и сложные.
17
Об этом мы еще потолкуем в Схолии Семнадцатой.
18
В К. Арсеньев. Встреча в тайге. Сборник рассказов. М., Детгиз, 1963. Рассказ «В тундре».
Читать дальшеИнтервал:
Закладка: