Станислав Бескаравайный - Бытие техники и сингулярность
- Название:Бытие техники и сингулярность
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2018
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Бескаравайный - Бытие техники и сингулярность краткое содержание
Бытие техники и сингулярность - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
То есть предложенные А. И. Половинкиным формулировки нельзя назвать законами. Это закономерности. И что более важно, не указаны критерии изменения тренда, из-за чего происходит поворот от упрощения к усложнению системы и наоборот. Широко известный «закон Мура» — удвоение мощности компьютеров каждые восемнадцать месяцев — куда более информативен и с большим основанием может быть использован в качестве закона.
Аналогичные противоречия наблюдаются в позиции Ю. С. Мелещенко, который предложил следующие закономерности в развитии техники: «Растущая интенсивность применяемых процессов. Например, давления, температуры, скорости, напряжения, скорости и интенсивности применяемых процессов, увеличение скорости и количества принимаемой и перерабатываемой информации и т. д.» [147, с. 180]. Действительно, если взять статистику по скорости движения поездов за последние сто лет или проанализировать температуру теплоносителя в котлах, мы будем наблюдать увеличение средних значений. Но в каждом случае инженеру приходится решать оптимизационную задачу и при необходимости снижать напряжение в электросети, скорострельность автомата, температуру в печке-гриле и т. п. Более того, требования экономии ресурсов часто подталкивают инженера именно к снижению параметров.
Следовательно, закономерность увеличения значений — это тренд, общий вектор. В конкретном случае он может не работать. Нельзя назвать законом фразу «Тело, брошенное в воздух, должно упасть на землю» — падает большая часть таких тел, но самолеты и спутники не торопятся это делать. Требуется сформулировать как бы «закон всемирного тяготения» для техники, но его нельзя выразить обыденным языком, нужны специальные понятия, а их пока нет.
Менее противоречивыми выглядят закономерности, предложенные Е. П. Балашовым [10]: он рассматривает технику как антропогенную, созданную человеком систему:
«…3. Закон Повышения функциональной и структурной целостности систем.
4. Закон Преемственности функционально-структурной организации многоуровневых систем
5. Закон Адекватности функционально-структурной организации назначению системы.
6. Закон Сжатия этапов развития систем: постепенное сжатие по временной оси диалектической спирали».
Фактически к трендам развития техносферы автор прибавил законы диалектики, которые служат своего рода ограничителями для экстраполяции любой тенденции «в бесконечность».
Интересна попытка Ж. Симондона описать развитие технических объектов: он предложил закон снижения напряжения law of relaxation: группа технических изделий, предназначенных для набора общих функций (ансамбль), постепенно увеличивает свою индивидуализацию — происходит «конвергенция функций в структурном единстве» [300].
Но наиболее известная попытка сформулировать законы развития технических систем — теория решения изобретательских задач Г. С. Альтшуллера. Основной постулат его теории: для решения изобретательской задачи надо выявить и устранить противоречие, характерное для данной технологии. Алгоритм ТРИЗ использовался во множестве изобретений, хорошо применим для анализа успешных находок 8.
В ТРИЗе использованы новые понятия: идеальность вещества (под «идеальностью» понимается минимально возможная масса машин и механизмов) и вепольность системы (взаимодействие между любыми элементами системы посредством поля, не только физического, но и условного — механического, запахового и т. п.). Как был убежден Г. С. Альтшуллер, постоянное увеличение вепольности и стремление техники к идеальности (то есть переход с макроуровня на микроуровень, уменьшение массы) и составляют законы развития технических систем [3].
Однако стоит взять в пример развитие артиллерии, и сразу возникает вопрос. На каких-то этапах калибры пушек росли, на каких-то уменьшались. Да, post factum легко построить диалектическую спираль развития любого устройства (что на примерах показывает, скажем, В. М. Петров), но если смотреть не на примеры проблемных случаев из истории, а на общие тенденции использования ТРИЗа, то техника воспринимается исключительно как средство достижения человеком своих целей, техносфера заведомо лишена самостоятельной цели развития. Из-за этого антропоцентрического ограничения идеи об идеальности и вепольности имеют много общего с первой волной позитивизма, с идеями Г. Спенсера о непрерывном усложнении структур окружающего мира. Английский позитивист, стремясь выявить единый закон взаимодействия материи и движения, пришел к весьма обтекаемой формулировке: «Мы нашли, что таким и является на деле закон всего цикла изменений, проходимых всяким существованием, — потеря движения и последующая концентрация, за которой со временем следует возобновление движения и последующая дезинтеграция» [204, с. 612]. Под эту формулировку [6]Г. Спенсер с большим трудолюбием начал подгонять известные ему явления. Если английский позитивист отказался от диалектики, то Г. Альтшуллер, принимая законы диалектики, попытался свести процесс изобретения к четкому, однозначному алгоритму и расплывчатым определениям. Но такие алгоритмы в принципе невозможны, потому что требуют с помощью уже существующих понятий, уже выявленных противоречий, описания качественно новых, еще неизвестных явлений и технологий. Поэтому ТРИЗ применим скорее для рационализаторской деятельности, которую можно сравнить с решением головоломок в куновском понимании: парадигма техники, парадигма науки уже созданы, остается решить тысячу и одну прикладную задачу.
Можно сказать, что к использованию ТРИЗа в качестве инструмента прогнозирования техники есть существенные препятствия:
♦ конечная цель рассуждений «тризовцев» задана как утилитарное решение возникшей технической проблемы. Эта утилитарность, направленность на разрешение единственного противоречия, затрудняет прогнозирование следующего поколения технических изделий, в котором будут использованы новые противоречия;
♦ комплексы противоречий, характерные для целых индустрий, для промышленности практически не исследуются;
♦ таблица физических противоречий, которой пользуются при решении задач, никогда не может быть завершена в силу неисчерпаемости мира. Поэтому невозможно сказать, когда ее необходимо будет дополнить 9.
Следовательно, для создания качественных прогнозов надо отойти от узкоутилитарного тризовского метода и рассматривать комплексы противоречий: а) более системно; б) оценивать не последствия единичного изобретения, а динамику развития указанных комплексов. Основное (несущее) противоречие в любой системе выделять необходимо, но нельзя отождествлять его с тризовским «техническим противоречием» [7]. И прогноз развития техники формулировать уже на основании изменения или же консервации таких противоречий.
Читать дальшеИнтервал:
Закладка: