Дэниэл Деннет - Насосы интуиции и другие инструменты мышления [litres]
- Название:Насосы интуиции и другие инструменты мышления [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-112947-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэниэл Деннет - Насосы интуиции и другие инструменты мышления [litres] краткое содержание
Насосы интуиции и другие инструменты мышления [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Что же это значит? Неужели в этом модельном мире ничего нельзя предотвратить и ничего нельзя избежать? Неужели в нем нет ни нападений, ни защит, ни упущенных возможностей, ни пикировок истинной субъектности, ни подлинных возможностей? Следует признать, что наши шахматные программы, подобно насекомым и рыбам, слишком просты в качестве агентов, чтобы быть подходящими кандидатами на обладание морально значимой свободой воли, но детерминизм их мира не лишает их разноплановых талантов и способностей пользоваться имеющимися возможностями . Если мы хотим понять, что происходит в таком мире, мы можем – и должны – обсудить, как их осознанный выбор приводит к изменению обстоятельств, а также что они могут и не могут делать. Если мы хотим выявить каузальные закономерности , чтобы объяснить повторяющиеся мотивы, замеченные нами в тысяче партий, нам нужно всерьез рассмотреть позицию, в соответствии с которой в этом мире действуют два агента, А и Б, пытающиеся обыграть друг друга в шахматы.
Допустим, мы настроим турнирную программу таким образом, что при каждой победе А будет звенеть колокольчик, а при каждой победе Б – раздаваться гудок. Когда мы запустим марафон, наблюдатель, не знающий ничего о программе, заметит, что колокольчик звенит довольно часто, а гудок не раздается почти никогда. Наблюдателю захочется узнать, чем объясняется эта закономерность. Закономерность побед А над Б можно выявить и описать , не принимая интенциональную установку, но она все равно потребует объяснения. Единственным – и верным – объяснением может быть тот факт, что генерируемые А “убеждения” о том, что сделает Б, если… оказываются лучше, чем генерируемые Б “убеждения” о том, что сделает А, если… В таком случае, чтобы найти объяснение, необходимо принять интенциональную установку (см. главы 33 и 42, где приводятся примеры других каузальных связей, которые не поддаются объяснению, пока вы не принимаете интенциональную установку).
Пока все идет хорошо, но эти “решения” и “выборы” кажутся лишь вроде какрешениями и выборами. Такое впечатление, что им недостает чего-то, что свойственно подлинной свободе выбора: возможности поступить иначе. Но давайте внимательнее изучим конкретный пример, ведь внешность бывает обманчива. Для этого добавим в нашу турнирную программу третью шахматную программу, программу В. Допустим, программа В лучше программ А и Б и побеждает их почти всегда. Также допустим, что первые двенадцать ходов в паре таких партий в точности повторяются и программа В выигрывает обе партии, побеждая и программу А, и программу Б, но после двенадцатого хода партии идут не совсем одинаково. По завершении партий эксперты приходят к выводу, что программа В с большой вероятностью проиграла бы, если бы 12-м ходом, последним общим ходом обеих партий, программа А или программа Б провела бы рокировку. Рокировка 12-м ходом давала ключ к победе, который не заметила ни программа А, ни программа Б.
Пожимая плечами, разработчик программы А говорит: “Программа А могла бы провести рокировку”. Разработчик программы Б добавляет: “Моя программа, программа Б, тоже могла бы провести рокировку”. Но разработчик программы А прав, а разработчик программы Б ошибается! Как такое может быть? Турнирная программа Т детерминистична, и если мы снова сыграем те же партии в точно том же самом состоянии, ни программа А, ни программа Б не проведет рокировку! Разве разработчик программы А не заблуждается? Не обязательно. Что мы пытаемся выяснить, когда спрашиваем, могла ли программа А поступить иначе? Снова и снова рассматривая в точности такой же случай, мы не получим никакой информации, но рассматривая похожие случаи, мы увидим более полную картину. Если мы выясним, что во многих подобных обстоятельствах в других партиях программа А все же продолжает процесс оценки, замечает плюсы подобных ходов и совершает их, это подтвердит убежденность разработчика, что программа А могла бы провести рокировку.
Как минимум, мы можем обнаружить, что переключение единственного бита в генераторе (псевдо) случайных чисел заставило бы программу А провести рокировку. Допустим, разработчик программы А проанализирует фактическое исполнение программы и выяснит, что в этом случае программа А перестала “думать” на мгновение раньше нужного. (Любая шахматная программа, какой бы прекрасной она ни была, вынуждена в какой-то момент принудительно прерывать свои поиски.) Программа А рассматривала возможность рокировки и начала анализировать ее исход, но время поджимало, а потому программа А обратилась к своему генератору случайных чисел, то есть, по сути, подбросила монетку, и выбрала ход, который сочла лучшим на тот момент – и этим ходом стала не рокировка. Но если бы псевдослучайным числом стала единица, а не ноль, программа А подумала бы над своим ходом немного дольше и в итоге провела бы рокировку. “Просто переключите один бит в случайном числе – и программа А победит!” – заявляет разработчик. Мы же скажем, что в таком случае просчет программы А с рокировкой оказался непредвиденным результатом неудачного обращения к генератору случайных чисел.
Когда мы обратимся к разработчику программы Б, он не сможет подобным образом подтвердить свое заявление, что программа Б могла бы провести рокировку. Программа Б действительно “знает”, что рокировка в сложившейся ситуации допустима, и, возможно, даже некоторое время “рассматривала” возможность рокировки, но выбрать рокировку в этом случае даже не собиралась. Рокировка была для нее сложным ходом – одним из тех ходов, которые в газетных шахматных задачах помечают символом “!”, – и выходила далеко за пределы ограниченных аналитических способностей программы Б. Итак, у нас есть полностью детерминистический мир – программа Т, – в котором программа А могла провести рокировку, а программа Б провести ее не могла. Разница между программами А и Б реальна и объяснима – это разница в компетентности или способностях. Можно сформулировать это очевидно парадоксальным образом:
Программа А могла провести рокировку в момент времени t , но во вселенной в момент времени t рокировки произойти не могло.
Что дает нам право так описывать ситуацию? Все просто: если мы считаем программу А отделенной от ее непосредственной среды – куда входит и генератор случайных чисел , – то не предопределено, проведет ли программа А рокировку. Это зависит от того, что, строго говоря, находится за пределами программы А. В момент времени t вселенная пребывала в таком состоянии, которое не допускало проведение рокировки программой А, но программа А в этом “не виновата”. Программа Б, напротив, провести рокировку не могла, потому что рокировка была не в ее природе. Чтобы представить, как программа Б проводит рокировку, нам пришлось бы внести слишком много поправок в реальность.
Читать дальшеИнтервал:
Закладка: