Сергей Труфанов - Наука логики Гегеля в доступном изложении

Тут можно читать онлайн Сергей Труфанов - Наука логики Гегеля в доступном изложении - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Самара: Парус, год 1999. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука логики Гегеля в доступном изложении
  • Автор:
  • Жанр:
  • Издательство:
    Самара: Парус
  • Год:
    1999
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 41
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Труфанов - Наука логики Гегеля в доступном изложении краткое содержание

Наука логики Гегеля в доступном изложении - описание и краткое содержание, автор Сергей Труфанов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Логик много не бывает. Более 2000 лет назад
впервые описал некоторые формы мысли. На основе его трудов позднее была составлена так называемая формальная логика, которая на сегодняшний день является общепризнанной. Около 200 лет назад
создал полный вариант логики и тем самым сделал её полноценной наукой – "Наукой логики". Однако изложил он её столь труднодоступным языком, что всё содержание и по сегодняшний день продолжает оставаться малопонятным.
В предлагаемой вниманию читателя книге
 предпринята попытка изложить логику Гегеля в краткой и доступной форме.

Наука логики Гегеля в доступном изложении - читать онлайн бесплатно полную версию (весь текст целиком)

Наука логики Гегеля в доступном изложении - читать книгу онлайн бесплатно, автор Сергей Труфанов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В этом примере гражданин Иванов будет представлять собой момент единичности . То, что он является студентом, – это одна из его особенностей , которая соотносит его с университетом. Университет, соответственно, представляет собой нечто всеобщее – единую в себе целостную систему, состоящую из таких единичностей: Петрова, Иванова, Сидорова и т.д. Как всеобщий организм, университет распадается в самом себе на свои особенные сферы – факультеты, на которых обучаются все его студенты. Во время знакомства с видами суждений мы рассматривали определение студент как одно из общих понятий гражданина Иванова, существующее наряду с другими его понятиями, такими, как: спортсмен, нумизмат, семьянин и т.д. Здесь же, в учении о видах умозаключений, определение студент становится одной из особенностей гр. Иванова, которая связывает его с соответствующей ему всеобщностью – университетом и после этого снимает себя, становясь общим местом; в университете все: и Ивановы, и Петровы, и Сидоровы – студенты.

В первой фигуре (Е – О – В) умозаключений наличного бытия обе посылки ещё не опосредованы деятельностью мысли, но уже опосредствуется вывод: Иванов - студент. – Студенты обучаются в вузах. – Иванов обучается в вузе .

Во второй фигуре (О – Е – В) одна посылка уже опосредствована благодаря выводу из первой фигуры умозаключения, и, соответственно, опосредствуется вывод: Иванов обучается в вузе . – Иванов - студент. – Студенты обучаются в вузах .

В третьей фигуре (Е – В – О) мысль опосредствовала уже обе посылки и, соответственно, опосредствуется вывод: Студенты обучаются в вузах . – Иванов обучается в вузе . – Иванов - студент .

В результате мы вернулись к тому, с чего начали – к первой посылке первой фигуры умозаключения качества. Тем самым круг продвижения мысли замкнулся. Мы начали с суждения Иванов – студент , к нему же и вернулись. Определение студент перестаёт здесь быть одной из особенностей гр. Иванова и означает теперь его единичность в пределах той всеобщности (вуз), к которой он отнесён. Иными словами, Иванов теперь для нас не спортсмен, и не нумизмат, и не член семьи, а только студент вуза.

Приведём ещё такой пример. Школа – это всеобщий в себе организм. Допустим, что директор одной средней школы обратил на перемене внимание на чрезмерно разбушевавшегося ученика. "Фамилия?" – спрашивает директор. "Петров" – отвечает ученик. "Из какого класса?" – "Пятого А". За счёт этих вопросов директор, как фигура, представляющая собой всеобщий интерес школы, мысленно соединил единичность ученика Петрова со всей школой через момент его особенности – принадлежность к 5-А классу. На этом, казалось бы, их общение могло и закончиться. Всё, что надо было узнать от ученика, директор узнал, а всё остальное по поводу его поведения он мог сообщить классной руководительнице 5-А класса позднее.

Но директор школы был опытным педагогом. Как выразитель всеобщего интереса школы, он до этого момента не был непосредственно связан с единичностью ученика Петрова, поэтому он не был уверен в том, что выявленная им цепочка опосредствования: ученик Петров (Е) – 5-А класс (О) – школа (В), была истинной. Ученик Петров мог: а) оказаться не Петровым, а Козловым; б) учиться не в 5-А, а в 4-Б классе, в) учиться вообще не в этой школе, а в какой-либо другой. Поэтому директор предлагает ученику Петрову пройти в учительскую, где у присутствующей там классной руководительницы 5-А класса спрашивает: "Ваш ученик?" "Мой" – отвечает учительница. Вот только благодаря этому директор смог установить качественную однородность всех определений своего умозаключения. Представив ученика Петрова (Е) классной руководительнице (О), директор установил его принадлежность к своей школе (В).

При этом автоматически состоялись все три фигуры умозаключений наличного бытия и все три определения понятия последовательно прошли через его середину. Классная руководительница 5-А класса (О) подтвердила принадлежность ученика Петрова данной школе: Е – О – В. Ученик Петров (Е), в свою очередь, оказался посредствующим звеном между директором и классной руководительницей: В – Е – О. Ну а директор школы (В), показав ученика классной руководительнице, тем самым опосредствовал собой их принадлежность друг к другу: О – В – Е. В итоге качественная однородность моментов понятия была установлена, и, следовательно: а) ученику Петрову уже не удастся уйти от ответственности, как, впрочем, и б) классной руководительнице, ведь это ученик из её класса, и где-нибудь на педсовете ей ещё напомнят об этом. Да и в) директору тоже должно быть не в радость, поскольку все эти безобразия в пределах его школы происходят, могут узнать в ГорОНО...

Объективный смысл фигур умозаключений наличного бытия состоит в следующем: всё то, что постигается разумно, оказывается трояким умозаключением, где каждый член поочерёдно занимает как место крайностей, так и опосредствующей середины. Делать это необходимо для того, чтобы установить качественную чистоту понятия и избежать при этом примесей чужого качества. Только так мышление может гарантировать себя от эклектики, способной увязать в отдельно взятом умозаключении всё что угодно: "дядьку в Киеве с бузиной в огороде".

§ 188. Так как во всех трёх фигурах умозаключения наличного бытия каждый момент поочерёдно занимал место как крайностей, так и середины, то благодаря такому взаимному опосредствованию всеобщность , особенность и единичность доказали друг другу единородность своего качества и, соответственно, доказали свою принадлежность одному понятию. Из такого результата следуют два вывода: а) отрицательный и б) положительный.

а) Факт родственной чистоты (качественная однородность) моментов понятия становится теперь общим местом и делается уже ненужным для дальнейшего хода познания. Тем самым качественная определённость моментов понятия снимает себя, и на её месте остается только их количественное различие. При этом все три определения понятия ( всеобщее , особенное , единичное ) теряют по отношению друг к другу своё специфическое значение и становятся безликими универсальными символами. В результате мы получаем четвёртую фигуру умозаключений наличного бытия – фигуру математического умозаключения : В – В – В. "Если две вещи или два определения равны третьему, то они равны между собой". Математическое , или количественное умозаключение является совершенно бесформенным умозаключением, поскольку в нём снимаются все различия, кроме количественных. Оно уже не касается содержания суждений, а определяет только их форму: равно – не равно , истинно – ложно , и т.п.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Труфанов читать все книги автора по порядку

Сергей Труфанов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука логики Гегеля в доступном изложении отзывы


Отзывы читателей о книге Наука логики Гегеля в доступном изложении, автор: Сергей Труфанов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x